Press Release: SuperAger Brains have Distinct Pathophysiology

Posted on December 01, 2022 by Admin

The Northwestern University Feinberg School of Medicine Mesulam Center for Cognitive Neurology and Alzheimer’s Disease is currently recruiting participants to be part of their ‘SuperAging Research Program.’ Data collected from current and previous SuperAgers have provided new and exciting insights into how the brains of these individuals compare to those of otherwise healthy adults, as well as those diagnosed with Alzheimer’s disease, to better understand the neurological processes associated with aging.

What is a SuperAger?

The term ‘Superagers,’ as defined by Northwestern researchers, reflects adults over the age of 80 who have a superior memory capacity that resembles that of middle-aged adults. In order to be accepted into the program, this group of elderly individuals must demonstrate that their ability to recall everyday events and previous personal experiences is significantly better than people in their 50s and 60s; however, their performance on other cognitive tests does not necessarily need to be superior.

Why study SuperAgers?

In addition to gaining a better understanding of how different aging processes are reflected in the brain, Northwestern researchers also believe that data obtained from the SuperAging study will have significant implications for elucidating the mechanisms responsible for the development of Alzheimer’s disease and dementia.

The SuperAger Brain

In the SuperAging program, study participants provide blood samples, as well as magnetic resonance imaging (MRI) and/or positron-emitted tomography (PET) scans of their brains, in addition to participating in memory and other cognitive assessments.

Furthermore, after a SuperAger dies, they donate their brains to the SuperAging program. To date, the brains of deceased SuperAgers have revealed relatively thick cortexes that shrink at a much slower rate as compared to individuals in their 50s and 60s. The cortex is responsible for decision-making processes, critical thinking, and retention and memories.

Northwestern researchers believe that the delayed shrinking in the SuperAger’s brain may be due to larger and healthier neurons, particularly within the entorhinal cortex. The entorhinal cortex, which is often the first area of the brain to be affected in Alzheimer’s disease, plays an important role in both memory and learning, particularly due to its interactions with the hippocampus.

In addition to a more resilient cortex, SuperAger brains also appear to have significantly fewer tau tangles as compared to healthy controls. This abnormal protein accumulation within neurons is often indicative of Alzheimer’s disease; therefore, the reduced concentration of tau tangles within the SuperAger brain may be related to their more robust cortex that is capable of withstanding damage by tau protein infiltration.

The von Economo neurons (VENs), which are located in both the fronto-insular cortex (FI) and anterior limbic area (LA) of the brain, are elongated bipolar neurons that are not commonly found in many species aside from humans, apes, elephants, whales, dolphins, and songbirds. Although the functional implications of VENs remain unclear, previous studies indicate that the abundance of these nerve cells within the anterior cingulate cortex likely indicates that they are important for regulating emotions and attentiveness.

Interestingly, the brains of SuperAgers exhibit a significantly greater concentration of VENs.

Source:

https://www.news-medical.net/news/20221127/The-distinct-pathophysiology-of-e28098SuperAgere28099-brains.aspx