Role of Cytology in Cancer Screening (The Citiscreen Experience)

BM Petrikovsky

Garden OB/GYN, New York, NY

Correspondence should be addressed to BM Petrikovsky, Garden OB/GYN, New York, NY

Received: December 04, 2021; Accepted: December 12, 2021; Published: December 19, 2021

INTRODUCTION

Papanicolaou (PAP) smears revolutionized the cytopathology field. Recently, gynecologists are moving to fluid-based technology that provides more accurate interpretation and allows for molecular testing for the HPV infection [1-3].

Besides PAP smears, cytology is successfully used for the detection of other malignancies, including the following:

- Respiratory/exfoliative cytology, (bronchial washing, sputum, bronchoalveolar lavage, and bronchial brushing). Those are used to detect lung cancer.
- 2. Urinary cytology (Urine cytology, bladder washing, and brushing cytology). Kits utilizing the Fluorescent In Situ Hybridization (FISH) are already in use [4-6].
- Body cytology: (Pleural fluid, pericardial fluid, peritoneal fluid, and cerebrospinal fluid (CSF) cytology). Those are used mainly to detect malignancies.
- 4. Gastrointestinal Tract: Sampling the mucosa is a routine procedure during endoscopy.
- 5. Discharge cytology: The most common example is nipple discharge used to screen for breast cancer.

The detection of premalignant oral lesions improves the survival and the morbidity of patients. The cytological study of oral cells is a technique that is an attractive option for the early diagnosis of oral cancer [7,8].

The advantages of cytology are fourfold: Cheap, quick, safe, and simple. Advances in cytology research led to the development of more sophisticated techniques which may be summarized as follows [9].

- 1. Regular smears.
- Cytocentrifuge smears. This method concentrates cells and is advantageous when few cells are present.
- Centrifuge smears using membrane filters. This method utilizes a paper filter with small pores to trap contaminating material.
- Monolayer liquid-based cytology. The smears are superior to the conventional ones and also allow testing for viral DNA 69-72.

DIAGNOSTIC PITFALLS

No single cell characteristic is pathognomonic of malignancy. The following are cytological signs of possible premalignant or malignant disease: High cellularity, increased nuclear/cytoplasmic ratio, nuclear hyperchromasia, prominent and large nucleoli, increased mitotic activity, nuclear membrane abnormalities, cellular and nuclear pleomorphism among others. As a rule, cytological assessment, if abnormal requires confirmation via definite histology. Technical problems (inadequate sampling, poor fixation, etc.) make cytological diagnosis challenging at times. Cellular changes (inflammation, necrosis, atypical appearances, etc.) may be due to non-neoplastic conditions (infection, trauma, infarction, hemorrhage, etc.) and require an experienced cytologist.

Citation: BM Petrikovsky, Role of Cytology in Cancer Screening (The Citiscreen Experience). Cancer Med J 5(2): 70-72.

SMEARS IN GYNECOLOGY

The most popular and well-recognized screening technique is PAP smear in cervical cancer prevention. Very few in the medical community, let alone in the general public, knows that the pioneering authors (Papanicolaou and Traut) targeted endometrial rather than cervical cancer. [10,11]. Since 10%-15% of uterine cancers are detected in premenopausal women, we suggested a new screening test based on the endometrial cell's evaluation. The endometrial cells were obtained from the menstrual content of menstrual pads, cups, and intravaginal tampons [12,13]. This technique was later expanded to include smears obtained from the content of post-menopausal bleeding [13]. Studies have suggested that endometrial cells on cytology in women over 40 years of age may be correlated with a greater risk of endometrial pathology [14,15]. In 2001, the Bethesda System for cervical cytology recommended reporting endometrial glandular cells identified in the PAP tests of women ≥40 years of age [16]. Endometrial cells are shed throughout the menstrual cycle but are more common in the first 12 days. These cells can be found in the cervical smear [17,18]. A thin-layer Pap test has a sensitivity of 88.3% and a specificity of 87.5% for the detection of endometrial carcinoma [19]. The cytological distinctions among normal endometrial cells and adenocarcinoma are well established: enlarged nuclei and presence of nucleoli in abnormal endometrial cells, variation of nuclear size, coarse chromatin, and irregular nuclear membranes [19]. In the absence of abnormal cells, the presence of normal endometrial cells did not increase the risk of endometrial malignancy. Adding the results of the PAP smear to endometrial thickness helps detect endometrial cancers that are missed by transvaginal sonography [20]. Citiscreen incorporates a number of smears (urine, cervical, dental, etc.) into its screening protocols [21]. Further advances in cytology will allow for more accurate utilization of these safe and reliable technologies for cancer screening algorithms [22].

REFERENCES

- 1. Schiller CL, Nicholov AG, Kaul KL, et al. (2004) High-risk human papillomavirus detection: A split-sample comparison of hybrid capture and chromogenic in situ hybridization. American journal of Clinical Pathology 121: 537-545.
- 2. Matthews-Greer J, Rivette D, Reyes R, et al. (2004) Human papillomavirus detection: Verification with cervical cytology. Clinical Laboratory Science 17(1): 8-11.
- 3. Yarkin R, Chauvin S, Konomi N, et al. (2003) Detection of HPV DNA in cervical specimens collected in cytologic solution by ligation-dependent PCR. Acta Cytologica 47(3): 450-456.
- 4. Quddus MR, Zhang S, Sung CJ, et al. (2002) Utility of HPV DNA detection in thin-layer, liquid-based tests with atypical squamous metaplasia. Acta Cytologica 46(5): 808-812.
- 5. Degtyar P, Neulander E, Zirkin H, et al. (2004) Fluorescence *in situ* hybridization performed on exfoliated urothelial cells in patients with transitional cell carcinoma of the bladder. Urology 63(2): 398-401.
- 6. Sarosdy MF, Schellhammer P, Bokinsky G, et al. (2002) Clinical evaluation of a multi-target fluorescent *in situ* hybridization assay for detection of bladder cancer. The Journal of Urology 168(5): 1950-1954.
- 7. Yamamoto D, Shoji T, Kawanishi H, et al. (2001) A utility of ductography and fiberoptic ductoscopy for patients with nipple discharge. Breast Cancer Research and Treatment 70(2): 103-108.
- 8. Kaur M, Saxena S, Samantha YP, et al. (2013) Usefulness of oral exfoliative cytology in dental practice. Journal of oral Health and Community Dentistry 7(3): 161-165.

- 9. Al-Abbadi MA (2011) Basics of cytology. Avicenna Journal of Medicine 1(1): 18-28.
- 10. Papanicolaou GN, Traut HF (1941) The diagnostic value of vaginal smears in carcinoma of the uterus. American Journal of Obstetrics and Gynecology 42(2): 193-206.
- 11. Traut HT, Papanicolaou GN (1943) Cancer of the uterus: The vaginal smear in its diagnosis. California and Western Medicine 59(2): 121-122.
- 12. Petrikovsky BM (2000) PET smear: Will it ever work? NCMC Proceedings 6: 22-26.
- 13. Petrikovsky BM (2019) Menstrual smear can be used to screen for endometrial pathology. World Journal of Gynecology and Women's Health 2(5).
- 14. Zucker PK, Kasdon EJ, Feldstein ML (1985) The validity of Pap smear parameters as predictors of endometrial pathology in menopausal women. Cancer 56(9): 2256-2263.
- 15. Gondos B. King EB (1977) Significance of endometrial cells in cervicovaginal smears. Annals of Clinical and Laboratory Science 7(6): 486-490.
- 16. Solomon D, Nayar R (2004) The Bethesda System for reporting cervical cytology: Definitions, criteria, and explanatory notes. New York: Springer-Verlag.
- 17. Vooijs GP, van der GY, Vooigs GL (1987) The presence of endometrial cells in cervical smears in relation to the day of the menstrual cycle and the method of contraception. Acta Cytologica 31(4): 427-433.
- 18. Ferenczy A, Bergeron C (1991) Histology of the human endometrium: From birth to senescence. Annals of the New York Academy of Sciences 622: 6-27.
- 19. Zhou J, Tomashefski J, Jr, Khiyami A (2007) Diagnostic value of the thin layer, liquid-based Pap test in endometrial cancer: A retrospective study with emphasis on cytomorphologic features. Acta Cytologica 51(5): 735-741.
- 20. Van Doorn HC, Opmear BC, Kooi GS (2009) Value of cervical cytology in diagnosing endometrial carcinoma in women with postmenopausal bleeding. Acta Cytologica 53(3): 280-286.
- 21. Petrikovsky BM (2021) Citiscreen cancer screening: An update. Journal of Oncology & Cancer Screening 2(1): 3-6.
- 22. Petrikovsky BM (2021) Cancer screening in the 21 Century. Eliva press 2021.