Mitomycin-C and Capecitabine (MIXE) Regimen as Salvage Therapy for Advanced Pancreatic Cancer

Shreya Prasad Goyal, Keyur Thakar, Su Yun Chung, Jyothi Jose and Muhammad Wasif Saif*

Northwell Health Cancer Institute, Lake Success, NY 11042, USA

Correspondence should be made to Muhammad Wasif Saif, Northwell Health Cancer Institute, Lake Success, NY 11042, USA

Received: September 8, 2021; Accepted: November 18, 2021; Published: November 25, 2021

ABSTRACT

BACKGROUND

The prognosis of patients with advanced pancreatic cancer (APC) is dismal. Following nab-paclitaxel plus gemcitabine (AG) and FOLFIRINOX, there is no recommended third-line chemotherapy. There is in vivo evidence of mitomycin-C induced upregulation of tumor thymidine phosphorylase (TP) for the conversion of capecitabine to 5-fluorouracil, the active chemotherapeutic agent. This could translate clinically to synergistic effects of mitomycin-C and capecitabine (MIXE). We report here the efficacy and safety of the MIXE regimen as salvage chemotherapy regimen for patients with refractory APC.

METHODS

We retrospectively reviewed patients who were treated with mitomycin-C (7 mg/m²) every three weeks in combination with capecitabine (1000 mg) twice daily (2000 mg/day) on days 1 to 14 every three weeks. All patients had previously received at least two chemotherapy regimens including AG, FOLFIRINOX or irinotecan liposome injection. Laboratory tests including complete blood count were checked weekly, while chemistries, liver function tests and CA19-9 were determined every three weeks. Radiological assessment of their disease with computed tomography scans was performed every nine weeks.

RESULTS

A total of 27 patients (16 males), aged 51-79, ECOG<2, who had received either two prior regimens (13), three prior regimens (8) or four prior regimens (6), or prior radiation (7) were included. Stable disease was seen in 12 patients (44%) and partial response in 2 patients (7%), while disease progression was seen in 12 patients (44%). Duration of response ranged from 9 to 24 weeks. No patient demonstrated complete response. One patient was not evaluable. The most common toxicities included grade 2 hand-foot syndrome (HFS), grade 1 fatigue and grade 2 diarrhea. Due to multiple prior regimens and/or history of grade 4 neutropenia or neutropenic fever, 80% of patients received peg-filgrastim upfront as primary prevention. No grade 3 or 4 hematological toxicities were noted.

Citation: Muhammad Wasif Saif, The First Study Evaluating the Safety of Pre-Surgery Administration of Metformin in Patients with Colorectal and other Gastrointestinal Cancers and Effect on Cancer Stem Cells. Cancer Med J 5(1): 11-19.

CONCLUSIONS

The MIXE regimen showed a modest efficacy in heavily pre-treated patients with APC. Given the in vivo evidence of mitomycin-C-induced upregulation of TP, this efficacy could be the result of the synergy between mitomycin-C and capecitabine and should be further evaluated. The MIXE regimen may be considered for patients with APC who are refractory to primary treatment and are without other options or who are not eligible for clinical studies.

KEYWORDS

Pancreatic cancer; Capecitabine; Fluoropyrimidines; Mitomycin

INTRODUCTION

Pancreatic ductal adenocarcinoma is an aggressive malignancy and one of the leading causes of cancer-related death in the United States. The most effective treatment is surgical resection, however only 15%-20% of patients are candidates as most patients are diagnosed with locally advanced or metastatic disease. The five-year overall survival for patients with pancreatic cancer is 9% [1]. The treatment of patients with advanced pancreatic cancer (APC) focuses on disease control, prolonging survival, and palliation of symptoms.

For patients with good performance status (PS), Eastern Cooperative Oncology Group (ECOG) 0 or 1, limited comorbidities and normal serum bilirubin, initial treatment should be with FOLFIRINOX (5-fluorouracil (5-FU), leucovorin, irinotecan and oxaliplatin). An alternate, less intensive regimen is nab-paclitaxel and gemcitabine (AG). If patients are not likely to tolerate an intensive regimen, treatment with gemcitabine alone or with the addition of capecitabine or erlotinib is an option, for ECOG PS 2 [2].

Beyond first-line therapy there are options for patients with genetic germline mutations, such as NTRK (larotrectinib, entrectinib), BRCA1/BRCA2 (PARP inhibitor olaparib), and PD-1/MSI-H/dMMR (pembrolizumab). However, if patients do not have any favorable mutations, there is no standardized third-line regimen beyond 5-FU and gemcitabine-based regimens.

Review of medical literature revealed that there have been several clinical trials using mitomycin-C (MMC) combined with various agents, including capecitabine, to treat different stages of pancreatic cancer. Table 1 outlines some of these studies from 1980 to 2019. Given the diverse nature of the studies included in the table, for example published year, trial goals, single center vs multicenter, and patient populations, the common parameters may not be available for comparison. Some trials included gallbladder and bile duct cancers along with pancreatic cancer (the table includes numbers specifically for pancreatic cancer patients).

There is in vivo evidence of MMC-induced upregulation of tumor thymidine phosphorylase (TP) for the conversion of capecitabine to 5-FU, the active chemotherapeutic agent [3]. This could translate clinically to synergistic effects of mitomycin-C and capecitabine (MIXE) regimen.

Here we examine the MIXE regimen which combines MMC and capecitabine, a chemotherapy combination that capitalizes on the synergistic effects of these two agents.

PATIENTS AND METHODS

We retrospectively reviewed efficacy, safety and toxicity data on patients at our institution diagnosed with APC who were treated with the MIXE regimen. Data from electronic patient records was collected including age, gender, diagnosis, stage, ECOG status, previous chemotherapy regimens, doses of MIXE regimen, toxicities and outcome including RR, CA 19-9 and survival when available.

According to institutional standards, all these patients had satisfactory bone marrow function (hemoglobin >9 g/dl); absolute neutrophil count >1,500 cells/mm³ and platelet count >100 cell/mm³); renal (serum creatinine <1.5 mg/dl) and liver function (serum total bilirubin <1.5 mg/dl and serum transaminases <2.5 times the upper limit of laboratory normal if no liver metastases or <5 times the upper limit if liver metastases were present) before administration of MIXE chemotherapy.

Treatment regimen consisted of MMC (7 mg/m²) every three weeks in combination with capecitabine (1000 mg) twice daily (2000 mg/day) on days 1 to 14 every three weeks. All patients had previously received at least two chemotherapy regimens including AG, FOLFIRINOX or irinotecan liposome injection. Laboratory tests including complete blood count were checked weekly, while chemistries, liver function tests and CA 19-9 were determined every three weeks. Radiological assessment of their disease with computed tomography scans was performed every nine weeks.

Pre-emptive antiemetics included ondansetron 8mg intravenously and dexamethasone 10 mg intravenously. Prior to the administration of mitomycin-C according to the institutional guidelines. Furthermore, peg-filgrastim support was given prophylactically for patients who were above 65 years of age or had history of previous grade 4 neutropenia or neutropenic fever with the most recent chemotherapy regimen.

Toxicity was documented and graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0 [4].

Staging and radiological evaluation was performed according to the Response Evaluation Criteria in Solid Tumors (RECIST) [5]. Patients continued to receive MIXE chemotherapy until disease progression or unacceptable toxicity.

RESULTS

Demographic Characteristics

Between 2013 and 2020 we treated 27 patients with APC were treated with the MIXE regimen. Demographic features showed male:female ratio of 16:11, aged 51-79 (mean: 63), with ECOG PS <2. Number of prior chemotherapy regimens included: two prior regimens in 13 patients, three prior regimens in 8 patients, four regimens in 6 patients, while 7 patients had radiation before receiving MIXE. Baseline patient characteristics are summarized in Table 2.

Toxicities

The median number of treatment cycles was 5 (range: 2 - 17). No grade 3 or 4 hematologic toxicities were noted. Due to multiple prior regimens and/or history of grade 4 neutropenia or neutropenic fever, 80% of patients received peg-filgrastim upfront as primary prevention. The most common non-hematological toxicities included grade 2 hand-foot syndrome, grade 1 fatigue, and grade 2 diarrhea.

Efficacy

Overall disease control was seen in 52% patients including partial response (PR) in 2 patients (7%) and stable disease in 12 patients (44%). Disease progression was seen in 12 patients (44%) and one patient was not evaluable. Duration of response ranged from 9 weeks to 24 weeks (median: 9).

Regimen	Dose	# Of Pts	Stage	Outcome	Reference
5-FU, mitomycin, streptozotocin	NA	22	Unresectable	ORR 32% mOS 6 m	Burkowski RM, et al., Cancer Clinical trials, 1980 [34]
FEMII	5-FU, dose escalated 4-epidoxorubicin, MMC	12	Advanced	ORR 25% SD 30% mOS 3.4 m	Verhees S, et al.; Onkologie 1990 [39]
5-FU vs. Mallinson regimen (combined/ sequential 5-FU, cyclophosphamide, methotrexate, vincristine, and MMC) vs. Combined 5-FU, doxorubicin, and	NA	41	Advanced	ORR 7% vs. 21% vs. 15% mOS 4.5 m vs. 4.5 m vs. 3.5 m	Cullinan S, et al., Cancer 1990 [33]
cisplatin Streptozotocin, MMC and 5-FU vs. cisplatin, cytosine arabinoside, and caffeine	NA	82	Advanced	ORR 10% vs. 5.5% mOS 10 m vs. 5 m	Kelsen D, et al., Cancer 1991 [40]
5-FU, leucovorin, MMC, dipyridamole	5-FU 200 mg/m²/day by continuous infusion, leucovorin 30 mg/m² IV weekly, MMC 10 mg/m² day 1, and dipyridamole 75 mg PO four times daily × 5 weeks on and 1 week off	46	Advanced	ORR 22% CR 2%	Burch PA, et al., Am J Clin Oncol., 2000 [41]
PVI 5-FU vs. PVI 5-FU + MMC	PVI 5-FU (300 mg/m²/day for maximum of 24 weeks) or PVI 5-FU plus MMC (7 mg/m² every 6 weeks for four courses)	280	Advanced (65% metastatic)	ORR 8.4% vs. 17.6% mPFS 2.8 m vs. 3.8 m mOS 5.1m vs. 6.5m	Maisey N, et al., JCO 2002 [35]
Gemcitabine + MMC	Gemcitabine 800 mg/m ² IV on days 1, 8 and 15, and MMC 8 mg/m ² IV on day 1, every 4 weeks	55	II (2%) III (18%) IV (80%)	ORR 29% SD 33% mPFS 4.7 m mOS 7.25 m	Tuinmann G, et al.; Anticancer drugs. 2004 [22]
MDI regimen	MMC 6 mg/m² day 1, docetaxel and irinotecan on days 2 and 8 with escalating doses every 4 weeks.	15	Metastatic, pretreated	ORR 0% SD 20% mPFS 1.7 m mOS 6.1 m	Reni M, et al., Cancer Invest. 2004 [23]
SWOG S9700	5-FU 200 mg/m²/day continuous IV for 4 weeks then 1 week off; leucovorin 30 mg/m² IV on days 1, 8, 15, and 22, then 1 week off; MMC 10 mg/m² IV every 6 weeks for 4 doses; Dipyridamole PO 75 mg three times daily during 5-FU administration	50	Stage II or III unresectable	ORR 26% CR 4% Underwent resection 12%	Isakoff WH, et al., JCO 2007 [12]
DocMitoCape Regimen	Capecitabine 2000 mg/m² on days 1-14; docetaxel 40 mg/m² on day 1; MMC 4 mg/m² on day 1, every 21 days	16	Advanced, pretreated	PR 25% SD 25% Minor remission: 31% (shrinkage not fulfilling RECIST criteria for PR)	Kruth J, et al., J Cancer Res Clin Oncol. 2010 [19]
Infusional 5-FU, doxorubicin, and MMC (iFAM)	5-FU 800 mg/m² infusion on days 1-5; doxorubicin 30 mg/m² on day 1; MMC 8 mg/m² on day 1, every 4 weeks	60	Gemcitabine pretreated	ORR 10% SD 13% mPFS 2.4 m mOS 6.1 m	Lim KH, et al., Cancer Chemother Pharmacol. 2011 [15]
MMC and ifosfamide	MMC 8 mg/m² on day 1; ifosfamide 2,500 mg/m² and mesna 3,000 mg/m² on days 1-3, every 28 days	21	Metastatic (gemcitabine resistant)	PR 5% SD 10% mOS 3.7 m	Cereda S, et al., Chemotherapy 2011 [42]
Intra-arterial gemcitabine and MMC	1 cycle of MMC 8.5 mg/m ² and gemcitabine 500 mg/m ² on days 1 and 22 through an angiographic catheter into the celiac artery and IV infusions of 500 mg/m ² gemcitabine on days 8 and 15	17		ORR 24% mPFS 4.6 m mOS 9.1 m	Heinrich S, et al., Hepatogastroenterology. 2013 [16]
Adjuvant four drug chemotherapy regimen: 5-FU, leucovorin, MMC, and dipyridamole with chemoradiation (chemoRT) Trials A and B	Trial A: Upfront chemoRT (50 Gy split-course, 2.5 Gy/fraction) followed by four drug chemotherapy with bolus 5-FU for 4 cycles Trial B: Four drug chemotherapy with continuous	Trial A- 62	Localized, post-surgery T3 (66%) T4 (21%)	3 yr. OS 48% 5 yr. OS S31% 10 yr. OS 26% 3 yr. OS 32%	Schunke KJ, et al., Adv Radiat Oncol. 2017 [10]
	infusion 5-FU for 1 cycle followed by continuous chemoradiation (45-54 Gy, 1.8 Gy/fraction) and 2 additional cycles of chemotherapy	Trial B 57	T4 (4%)	5 yr. OS 23% 10 yr. OS 9%	
Neoadjuvant radiation with four cycles of 5-FU continuous infusion and cisplatin on day 5, 12, 19, and 26; MMC on day 6, 13, 20, and 27; and heparin infusion	NA	25	T3/T4 (7 th edition)	Treatment completion 92% Resection rates: 68% Pathological response according to Evans' classification: Grade IIA: 58.8% IIB: 29.4% IV: 11.8%	Endo Y, et al., World J Surg Oncology, 2019 [9]

Table 1: Summary of clinical trials using mitomycin-C (MMC) combined with various agents to treat different stages of pancreatic cancer.

Patients Enrolled	27			
Age				
Mean	63			
Range	51 - 79			
Gender				
Male	16			
Female	11			
ECOG	1			
	2			
Prior Regimens				
Two	13			
Three	8			
Four	6			
Radiation	7			

Table 2: Patient characteristics at baseline.

DISCUSSION

In patients with APC who have progressed following first-line and second-line therapy, there is a relative paucity of published studies evaluating the safety and effectiveness of chemotherapy regimens in this population, except for phase I studies. This might largely be due to the fact that such patients have a declining performance status and are no longer eligible to receive further systemic therapy. Treatment options for this group outside of a clinical trial are limited. MMC has been part of treatment regimens for pancreatic cancer for decades and recent data supports the synergistic effect of MMC with capecitabine. Our retrospective study illustrates that the combination of MMC with capecitabine achieves efficacy in heavily pretreated patients with very limited remaining treatment options.

A review of the medical literature revealed numerous studies, including Phase I, II and III studies, as well as retrospective studies, chronically the use of MMC and capecitabine [6-33]. Some of the most important studies are listed in Table 1. In these clinical studies the reported response rate (RR), PR and complete response ranged from 4% to 32%, and mOS was 3.4 months to 10 months. The most reported toxicities were neutropenia, thrombocytopenia, anemia, nausea, diarrhea and hand-foot syndrome.

Some of the earliest data from 1980 showed a response rate (RR) of 32% and a median overall survival (mOS) of 6 months with a combination of 5-FU, MMC, and streptozotocin in unrespectable pancreatic cancer [34]. One of the largest multicenter, prospectively randomized studies, randomized 280 patients to protracted venous infusion (PVI) 5-FU (300 mg/m²/day for a maximum of 24 weeks) or PVI 5-FU plus MMC (7 mg/m2 every 6 weeks for four courses) [35]. PVI 5-FU plus MMC resulted in a superior RR in comparison with PVI 5-FU alone (overall RR 8.4% vs. 17.6% (P = 0.04) in APC. The median OS was numerically better but not statistically significant (mOS 5.1 months vs. 6.5 months (p = 0.34). DocMitoCape regimen (docetaxel, MMC, capecitabine) was studied in 28 patients with a median age of 59 suffering from pancreatic, gallbladder, intra or extrahepatic bile duct carcinoma [19]. There were 16 patients with pancreatic cancer in the trial. The regimen was well tolerated with the most common grade 3 adverse events (AE) being anemia (14%) and leukopenia/thrombocytopenia (<10%). Partial response was 25% and stable disease was seen in 25% patients. In all, the DocMitoCape regimen exhibited a favorable safety profile and a high rate of tumor stabilization in patients with pre-treated gallbladder, bile duct and pancreatic carcinoma.

Germline BRCA (gBRCA) mutations have become a new promising target in treating APC, as supported by a recent success of POLO trial demonstrating improved progression free survival in a gBRCA-mutated APC population [36]. As a tumor suppressor gene, BRCA 1/2 are mainly involved in DNA damage repair process and having mutations in these genes is associated with increased risk of various types of malignancy. Compared to BRCA1 carriers, BRCA2 carriers have higher odds of pancreatic cancer (2.58 and 6.20, respectively) [37] and with a relative risk of 3.51, having BRCA2 mutation is associated with

increased lifetime risk of developing pancreatic cancer [38]. BRCA2 protein repairs double-strand DNA breaks via homologous recombination, and this supports rationale of using DNA-damaging chemotherapeutic agents against tumors harboring BRCA2 mutation [38]. In line with this, MMC demonstrated treatment response in BRCA2-mutated APC, either alone or in combination with capecitabine [20,38]. Notably, the response was seen in the third-line setting. One patient achieved partial response for 6 months with MIXE regimen, until she developed grade 3 thrombocytopenia that led to discontinuation of MMC [20]. Although this was only observed in a small patient population, it is reasonable to consider using MMC based regimen in BRCA2-mutated APC patients, especially when they exhaust other treatment options.

Our study used a more conservative dose of MIXE and hence resulted in a very favorable toxicity profile. One can argue that the MIXE regimen offers a therapeutic option at a low cost, which provides a well-tolerated alternative, with acceptable efficacy. However, others may regard the MIXE regimen an unacceptable alternative offering no benefits to the patient over best supportive care. The MIXE regimen has also shown promise in other types of malignancies, such as colorectal and breast cancer. The convenience of the regimen and toxicity of MIXE are more favorable to historical comparison to either bolus or in fusional 5-FU.

Our study had several limitations. Most notably, the small sample size did not allow for adequate capture of the most clinically significant endpoints. We did not observe any episodes of Grade 3-4 toxicities. There were also not enough intra-cycle blood draws to allow for reliable trending of the absolute neutrophil count nadir and recovery time. Additionally, this was a tertiary care institution retrospective analysis which may limit the extrapolation of results to a more diverse patient population.

CONCLUSIONS

We believe that the MIXE regimen can be considered as a palliative treatment regimen for patients with APC that is refractory to standard treatment and who are not eligible for enrollment in a clinical trial but have a good ECOG PS and wish to receive therapy. Review of the literature has shown the use of MMC in chemotherapy regimens dating back to 1980. While cross trial comparisons are difficult, MMC-containing regimens and specifically MMC and capecitabine combinations, have evidence of PR, CR, and stable disease responses. These data are valuable as salvage treatment options for heavily pretreated patients with APC. Further prospective studies including combination with novel agents in this setting are warranted.

REFERENCES

- 1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer Journal of Clinicians 69(1): 7-34.
- Sohal DPS, Kennedy EB, Cinar P, et al. (2020) Metastatic pancreatic cancer: ASCO guideline update. Journal of Clinical Oncology 38(27): 3217-3230.
- 3. Ogata Y, Matono K, Sasatomi T, et al. (2005) Upregulation of thymidine phosphorylase in rectal cancer tissues by mitomycin C. Journal of Surgical Oncology 93: 47-55.
- 4. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. (2017). U.S. Department of Health and Human Services.

- 5. Therasse P, Arbuck SG, Eisenhauer EA, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. Journal of the National Cancer Institute 92(3): 205-216.
- 6. Hofheinz RD, Hartmann JT, Willer A, et al. (2004) Capecitabine in combination with mitomycin C in patients with gastrointestinal cancer: Results of an extended multicentre phase-I trial. British Journal of Cancer 91(5): 834-838.
- 7. Hartmann JT, Oechsle K, Quietzsch D, et al. (2003) Protracted infusional 5-fluorouracil plus high-dose folinic acid combined with bolus mitomycin C in patients with gastrointestinal cacner: A phase I/II dose escalation study. British Journal of Cancer 89(11): 2051-2056.
- 8. Price TJ, Ross PJ, Hickish T, et al. (2004) Phase III study of mitomycin-C with protracted venous infusion or circadian-timed infusion of 5-fluorouracil in advanced colorectal carcinoma. Clinical Colorectal Cancer 3(4): 235-242.
- 9. Endo Y, Kitago M, Aiura K, et al. (2019) Efficacy and safety of preoperative 5-fluorouracil, cisplatin, and mitomycin C in combination with radiotherapy in patients with resectable and borderline resectable pancreatic cancer: A long-term follow-up study. World Journal of Surgical Oncology 17(1): 145-152.
- 10. Schunke KJ, Rosati LM, Zahurak M, et al. (2017) Long-term analysis of 2 prospective studies that incorporate mitomycin C into an adjuvant chemoradiation regimen for pancreatic and periampullary cancers. Advances in Radiation Oncology 3(1): 42-51.
- 11. Todd KE, Gloor B, Lane JS, et al. (1998) Resection of locally advanced pancreatic cancer after down staging with continuous infusion 5-fluorouracil, mitomycin-C, leucovorin, and dipyridamole. Journal of Gastrointestinal Oncology 2(2): 159-166.
- 12. Isacoff WH, Bendetti JK, Barstis JJ, et al. (2007) Phase II trial of infusional fluorouracil, leucovorin, mitomycin, and dipyridamole in locally advanced unresectable pancreatic adenocarcinoma: SWOG S9700. Journal of Clinical Oncology 25(13): 1665-1669.
- 13. Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. The New England Journal of Medicine 377(25): 2500-2501.
- 14. Brunner TB, Sauer R, Fietkau R (2011) Gemcitabine/cisplatin versus 5-fluorouracil/mitomycin C chemoradiotherapy in locally advanced pancreatic cancer: A retrospective analysis of 93 patients. Radiation Oncology 6: 88.
- 15. Lim KH, Kim TY, Lee KH, et al. (2011) Efficacy of infusional 5-fluorouracil, doxorubicin, and mitomycin-C (iFAM) in the treatment of patients with gemcitabine-pretreated pancreatic cancer and analysis of prognostic factors in a salvage setting. Cancer Chemotherapy and Pharmacology 68: 1017-1026.
- 16. Heinrich S, Kraft D, Staib-Sebler E, et al. (2013) Phase II study on combined intravenous and intraarterial chemotherapy with gemcitabine and mitomycin C in patients with advanced pancreatic cancer. Hepatogastroenterology 60(126): 1492-1496.
- 17. Aiura K, Takahashi S, Matsui J, et al. (2010) Beneficial effects of 5-fluorouracil and heparin-based portal infusion chemotherapy combined with mitomycin C and cisplatin after curative resection of pancreatic cancer. Pancreatology 10(2-3): 250-258.
- 18. Lee S, Oh SY, Kim BG, et al. (2009) Second-line treatment with a combination of continuous 5-fluorouracil, doxorubicin, and mitomycin-C (conti-FAM) in gemcitabine-pretreated pancreatic and biliary tract cancer. American Journal of Clinical Oncology 32(4): 348-352.

- 19. Kruth J, Nissen J, Ernst T, et al. (2010) Efficacy and safety of capecitabine in combination with docetaxel and mitomycin C in patients with pre-treated pancreatic, gallbladder, and bile duct carcinoma. Journal of Cancer Research and Clinical Oncology 136(12): 1845-1851.
- 20. Chalasani P, Kurtin S, Dragovich T (2010) Response to a third-line mitomycin C (MMC)-based chemotherapy in a patient with metastatic pancreatic adenocarcinoma carrying germline BRCA2 mutation. Journal of Pancreas 9(3): 305-308.
- 21. Cohen SJ, Dobelbower R, Lipsitz S, et al. (2005) A randomized phase III study of radiotherapy alone or with 5-fluorouracil and mitomycin-C in patients with locally advanced adenocarcinoma of the pancreas: Eastern Cooperative Oncology Group study E8282. International Journal of Radiation Oncology, Biology Physics 62(5): 1345-1350.
- 22. Tuinmann G, Hegewisch-Becker S, Zschaber R, et al. (2004) Gemcitabine and mitomycin C in advanced pancreatic cancer: A single-institution experience. Anticancer Drugs 15(6): 575-579.
- 23. Reni M, Panucci MG, Passoni P, et al. (2004) Salvage chemotherapy with mitomycin, docetaxel, and irinotecan (MDI regimen) in metastatic pancreatic adenocarcinoma: A phase I and II trial. Cancer Investigation 22(5): 688-696.
- 24. Petty RD, Nicolson MC, Skaria S, et al. (2003) A phase II study of mitomycin C, cisplatin and protracted infusional 5-fluorouracil in advanced pancreatic carcinoma: Efficacy and low toxicity. Annals of Oncology 14(7): 1100-1105.
- 25. Kelleher M, Tebbutt NC, Cunningham D, et al. (2003) Mitomycin C, carboplatin and protracted venous infusion 5-fluorouracil in advanced oesophago-gastric and pancreatic cancer: Results of two phase II studies. Clinical Oncology (Royal College of Radiologists (Great Britain)) 15(3): 92-97.
- 26. Kornek GV, Pötter R, Selzer E, et al. (2001) Combined radiochemotherapy of locally advanced unresectable pancreatic adenocarcinoma with mitomycin C plus 24-hour continuous infusional gemcitabine. International Journal of Radiation Oncology, Biology, Physics 49(3): 665-671.
- 27. Takada T, Nimura Y, Katoh H, et al. (1998) Prospective randomized trial of 5-fluorouracil, doxorubicin, and mitomycin C for non-resectable pancreatic and biliary carcinoma: Multicenter randomized trial. Hepatogastroenterology 45(24): 2020-2026.
- 28. Takada T, Kato H, Matsushiro T, et al. (1996) Prospective randomized trial comparing 1/2 FAM (5-fluorouracil (5-FU) + adriamycin + mitomycin C) versus palliative therapy for the treatment of unresectable pancreatic and biliary tract carcinomas (the 2nd trial in non-resectable patients). Japanese Journal of Cancer and Chemotherapy 23(6): 707-714.
- 29. Takada T, Kato H, Matsushiro T, et al. (1994) Comparison of 5-fluorouracil, doxorubicin and mitomycin C with 5-fluorouracil alone in the treatment of pancreatic-biliary carcinomas. Oncology 51(5): 396-400.
- 30. Takada T, Kato H, Sasaki M, et al. (1992) Prospective randomized trial comparing modified FAM (5-fluorouracil (5-FU) + adriamycin + mitomycin C) versus 5-FU alone for the treatment of non-resectable pancreatic and biliary tract carcinomas (the 1st trial in non-resectable patients). Study Group of Surgical Adjuvant Therapy for Carcinomas of the Pancreas and Biliary Tract. Japanese Journal of Cancer and Chemotherapy 19(9): 1295-1301.
- 31. Topham C, Glees J, Coombes RC (1993) Comparison of single-agent epirubicin and 5-fluorouracil/epirubicin/mitomycin in patients with advanced adenocarcinoma of the pancreas. Oncology 50(Suppl 1): 78-80.
- 32. Topham C, Glees J, Rawson NS, et al. (1991) Randomised trial of epirubicin alone versus 5-fluorouracil, epirubicin and mitomycin C in locally advanced and metastatic carcinoma of the pancreas. British Journal of Cancer 64(1): 179-181.
- 33. Cullinan S, Moertel CG, Wieand HS, et al. (1990) A phase III trial on the therapy of advanced pancreatic carcinoma. Evaluations of the Mallinson regimen and combined 5-fluorouracil, doxorubicin, and cisplatin. Cancer 65(10): 2207-2212.

- 34. Bukowski RM, Abderhalden RT, Hewlett JS, et al. (1980) Phase II trial of streptozotocin, mitomycin C, and 5-fluorouracil in adenocarcinoma of the pancreas. Cancer Clinical Trials 3(4): 321-324.
- 35. Maisey N, Chau I, Cunningham D, et al. (2002) Multicenter randomized phase III trial comparing protracted venous infusion (PVI) fluorouracil (5-FU) with PVI 5-FU plus mitomycin in inoperable pancreatic cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 20(14): 3130-3136.
- 36. Golan T, Hammel P, Reni M, et al. (2019) Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. The New England Journal of Medicine 381: 317-327.
- 37. Kupfer SS, Gupta S, Weitzel JN, et al. (2020) AGA clinical practice update on colorectal and pancreatic cancer risk and screening in BRCA1 and BRCA2 carriers: Commentary. Gastroenterology 159(2): 760-764.
- 38. Vyas O, Leung K, Ledbetter L, et al. (2015) Clinical outcomes in pancreatic adenocarcinoma associated with BRCA-2 mutation. Anticancer Drugs 26(2): 224-226.
- 39. Verhees S, Flechtner H, Queisser W, et al. (1990) Treatment of advanced pancreatic cancer with 5-fluorouracil, 4-epidoxorubicin and mitomycin C (FEM II). From the Chemotherapy of Gastrointestinal Tumors Group. Onkologie 13(1): 50-52.
- 40. Kelsen D, Hudis C, Niedzwiecki D, et al. (1991) A phase III comparison trial of streptozotocin, mitomycin, and 5-fluorouracil with cisplatin, cytosine arabinoside, and caffeine in patients with advanced pancreatic carcinoma. Cancer 68(5): 965-969.
- 41. Burch PA, Ghosh C, Schroeder G, et al. (2000) Phase II evaluation of continuous-infusion 5-fluorouracil, leucovorin, mitomycin-C, and oral dipyridamole in advanced measurable pancreatic cancer: A North Central Cancer Treatment Group Trial. American Journal of Clinical Oncology 23(5): 534-537.
- 42. Cereda S, Reni M, Rognone A, et al. (2011) Salvage therapy with mitomycin and ifosfamide in patients with gemcitabine-resistant metastatic pancreatic cancer: A phase II trial. Chemotherapy 57(2): 156-161.