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ABSTRACT 

BACKGROUND 

The inhibitor of differentiation (ID) family of TFs accumulated the result of development. This subgroup of bHLH TFs is an 

inverse regulator that acquires to constrain segregation and stimulate proliferation. The ID family of bHLH TFs control the 

reactions of homodimer and heterodimer by motions of E proteins (Class A) and tissue-specific (Class B) bHLH domain. A 

recent report suggested ID genes act to enhance the proliferative potential of tumour astrocytes. Those reports sup-ported ID 

genes are mighty regulators in tumour-angiogenesis and govern the malignant response of glial tumours. So, I performed 

bioinformatics and computational application to the current knowledge of the ID family in two different genomes. 

RESULTS 

My analysis data supported the composition of nucleotide, peptides, domain, motif, chromosome location, phylogeny, gene 

network, and expression of ID genes in the genome. Therefore, I documented the numeral of ID genes and proteins in mammals. 

Also, the functional mechanisms for-warded the ID1-ID4 genes revealed a dominant role during cellular differentiation, cell-

cycle-regulation, and cellular maturation. 

CONCLUSION 

My documented data proposed the justification of the ID family associated with glial tumours. In contrast, the numerous 

molecular functional mechanisms demonstrated the feature of glial growth. 
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INTRODUCTION 

The feature of neuroglia originates from the potentiality of 

genes  to  segregate  the  postpartum  period.  Glial  growth  

 

characterized encephalon to respond gliosis and malignant 

fluctuation of neuroglia. The primary tumours in the 

encephalon represent astrocytic derived tumours. 
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Astrocytes tend to the malignant transformation that 

differentiates cells in CNS [1-4]. The astrocytic tumour 

accord ubiquitous characteristic of effective astrocyte 

enhances genes and protein’s function. Those genes and 

their encoded proteins oscillation induce at developmental 

stages of astrocytic differentiation. Known studies exhibit 

the viability of effective state imparts by astrocytes under 

the reaction of neoplastic activity. The molecular 

mechanisms described the salient improvement and 

stimulating of neuroglia also glial pathology remains 

unclear. But the neuroglia activation and malignant 

variation of astrocytes depend on the process of ID genes 

and proteins [5]. The inhibitor differentiation (ID) genes 

that act in encephalon are optimum and limited to recover 

the strength of astrocytes. The likelihood of glial cells 

differentiates by the robust accumulation of ID genes and 

their encoded proteins in glial tumours [6]. An earlier study 

suggested the ID genes expressed at variable levels in cells 

acquired from glial tumours such as neuroblastoma, 

glioblastoma and glioma [1]. Recent experimental 

evidence supported the glial tumours obtained from the 

CNS also express a high degree of ID1-ID4 genes. The 

vector of inhibitor differentiation examines depend on the 

pathological model of the malignancy. Also, the unstable 

expression of ID genes suggested aggressive growth of 

glioblastoma multiform and astrocytoma [7]. ID genes 

explored in malignant cells and blood vessels during the 

enhancement of astrocytic tumours. The malformed 

function of ID1-ID3 genes in astrocytic tumours appears in 

blood vessels correlated by an intensity of endothelial 

proliferation. Abnormal function of ID1-ID3 suggested 

glioma, medulloblastoma and neuroblastoma. During 

angiogenesis, tumours specific ID1/ID3 genes in model 

organisms fail to develop and metastasize. Under these 

circumstances, neovascularization cruelly damages 

substantial regions on haemorrhage and necrosis [7-11]. 

Since the characteristic of tumour progression in NS is an 

equilibrium between anti-angiogenic and pro-angiogenic 

(angiogenic switch) molecules. Those molecules lead to 

the tumour neovascularization associated with brain 

tumours [12,13]. The aggressive gliomas generally 

coordinated with eminent vascular proliferation required 

oxygen even nutrients to enhance tumour mass. Thus, neo-

angiogenesis in tumours drive ID genes and proteins in the 

tumour endothelium. The degree of ID1-ID4 gene 

functions supported anti-angiogenic and targets against 

highly vascularized brain tumours. The maturation of 

PNS/CNS exhibits the function of E proteins (E2A, E2-2, 

and HEB) and tissue-specific (TAL, MYOG, MyoD, 

NeuroD, and MASH) bHLH TF’s does enhance a blueprint 

of cell-fate delimitation [14,15]. During neurogenesis, 

bHLH residue is a key regulator that develops neuronal 

differentiation required NeuroD family, OLIG family, 

NEUROG1-NEUROG3, atonal gene family, and ASCL1 

[16-21]. The proneural nuclear genes stimulate lineage-

specific differentiation through neurogenesis and 

determine patterns of cellular differentiation during 

development [22-25]. The neurogenic factor of HES1 

binds and resists the balance of bHLH domains, which 

inhibit transcriptions and prevent neural segregation and 

specification [26]. HES1 restrain neurogenic 

differentiation strategy and exhaust the derivative of neural 

precursors [27-30]. The ID genes bind and inhabit via the 

HES1 gene during the improvement of NS (nervous 

system). Both are inhibitors of neurogenesis and prevent 

the response of (–)ve regulation to allow transcription of 

proneural bHLH TF’s [31]. Earlier data suggested the 

elevated ratios of ID1-ID4 genes rapidly induce in cells and 

survive through the S phase. Those data raised the G1 

progression required functions of E2A with ID genes in the 

cellular process [32]. The signal of ID1-ID4 genes interacts 

with bHLH, E2A, E2-2, HEB, PAX, E2F, ETS, and other 

TF’s to form segregation for the growth of organisms [33-

36]. The ID1-ID4 genes have negative DNA binding 

control interactions of other factors. But it’s unclear that 

the ID genes have a +ve role in cellular proliferation. A 
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creative study supported the molecular checkpoint control 

proliferation through the RB family (i.e. pocket proteins 

family). Specifically, the ID genes bind with the RB family 

(Rb, p107, p130 inhibitors) for cell cycle regulations when 

massive abundance inhibit their anti-proliferative functions 

[37-40]. This appearance characterized neuroectodermal 

tumours when ID2 molar redundancy overactive 

hypophosphorlated RB [41]. Furthermore, the E2F family 

are vital for RB function, but the functional inhabitation 

between the cellular RB-ID2 and RB-E2F functions are 

unclear. However, ID2/E2F participate RB binding, while 

ID2 revealed by the mobility of the RB family (pocket 

proteins) family depend on E2F transcription. The 

enormous RB-ID2 and RBL1 (p107)-ID2 complexes 

establish S phase quench the signal of ID2 in natural target 

since the comparison disputed the ID2 activity 

characterized G1 progression. The negative response of the 

RB family control ID2 activity is fundamental for the S 

phase and cell cycle process [42,43]. Since the (-)ve factors 

in growth-promoting govern by tumour suppressor protein 

are vital for sustaining tissue-homeostasis [1]. The (-)ve 

preface of the ID with the RB family is vital to control the 

inhibitory firing of differentiation and anti-proliferation. 

Also, recent data proposed the ID1 inhabits the 

ETS1/ETS2 both are initiate responses of p16 as a tumour 

suppressor factor that acts uniform to the RB family [42]. 

Those factors also derive the character of ID genes that 

dominate the act of the RB family. The anti-apoptotic 

potentiality of the ID1-ID4 genes assigns a counterforce to 

support full immortalization. Thus, it is striking the 

apoptosis promoted by elements of BCL-2/BCL-XL genes 

(anti-apoptotic) precisely enhance ID-mediated 

immortalization by accessing dual ability to lead cellular 

outgrowth and death [44-46]. Inhibitor differentiation 

(ID1-ID4) genes associated with polypeptides that 

combine with a genus of bona fide growth-promoting 

proteins such as MYC and E2F1 gene are robust activators 

of apoptosis. 

The oncogenic action is strongly affected by the survival 

genes of the BCL-2/BCL-XL in the BCL-2 family [47-49]. 

In this work, an intense glimmer of hope and evidence 

justify the inclusion of the inhibitor differentiation family 

of nuclear oncogenes and their encoded proteins in glial 

tumours. 

MATERIALS AND METHODS 

Target Gene and Database 

The ID1 gene (UniProtKB ID: P41134) retrieves from the 

different specific databases (UniProt, KEGG, GenBank, 

EMBL, DDBJ and NCBI) and performs web-based 

application SMART for identification of the particular 

residue in the suspected sequence (query sequence). 

SWISS-MODEL performs for prediction of the protein 

structure is bioinformatics webserver for remodelling of 

the structure of molecules. This method is useful for 

generating molecular structure and utilizes it in many 

practical applications. The SWISS-MODEL is an updated 

database of remodelling of organism proteome for medical 

research. 

Genome 

Two organism’s genome sequences downloaded from 

various exclusive databases (Ensemble and NCBI).  

a) Homo sapiens: Genome assembly: GRCh38.p13 

(GCA_000001405.28)  

b) Mus musculus: Genome assembly: GRCm39 

(GCA_000001635.9) 

Standalone Tools 

HMMER software packages executes through MSA of the 

target domain as a profile search (Parameters: 1.0e-3). 

HMMER is statistical algorithms that build by MSA of the 

suspected region for profile search. Is implemented 

probabilistic model is well-known as the profile Hidden 

Markov Model (HMM). Standalone BLAST2 executed for 

homologs gene in both organisms. 
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Gene Annotation 

The BLAST2GO initialized using parameters 1.0e-3 for 

GO annotation. BLAST2GO is a computational and 

bioinformatics application for high-throughput GO 

annotation of particular sequences. The functional property 

of genes rectify via GO (Gene Ontology) annotation is a 

popular tool for practical work. 

Domain 

For observation of the conserved residue in the ID1-ID4 

gene, we can perform the MSA method to calculate unique 

tests of the homologs also streak them up, so we can 

observe the identity, differences and similarities. MSA of 

highest hits sequences analysis conducted using web-based 

application MultAlin for examination of sustain domain. 

Motifs 

MEME suite application performs for the resolution of 

sequence motifs in ID1 gene. MEME is a bioinformatics 

web-based tool for analysis and discovery of the specific 

motifs. 

Phylogeny 

For experimentation of the molecular evolutionary 

relationship of the ID genes in both organisms, we can 

perform MEGA-X for constructing a phylogenetic tree 

using Neighbor-Joining Methods. 

Gene Expression 

The gene expression of ID1-ID4 gene analysis can carry 

out by GENEVESTIGATOR application. 

GENEVESTIGATOR is an excessive-performance search 

engine for gene expression of different organisms. This 

application performs to determine and validate novel 

targets. 

Chromosome Location 

Chromosome location of ID1 gene can retrieve using a 

web-based application that is well-known as a gene card. 

The gene card database provides information on all known 

and predicted genes. This database is currently available 

for biomedical research such as predictions of genes, 

encoded proteins and associated diseases. 

Gene Networks 

The genetic matrix (gene network) is a group of molecules 

that regulates and interact with one another in the cells to 

control the expression volume of mRNA or proteins. Many 

proteins serve to activate genes are the TF’s that bind to the 

pioneer area and initiate the function of other proteins is 

called regulatory cascades. We can retrieve the STRING 

database for the prediction of protein-protein interaction. 

STRING database contains various resources like 

experimental data and computational prediction of proteins 

and nucleic acids. 

RESULTS 

Structural Analysis 

The primary structure determines the composition of 

nucleotides and peptides. The target structure arranges by 

468 nucleotides and 155 peptides with 56 peptides tied to 

DNA (Table 1). A three-dimensional (3D) structure stated 

that the 56 polypeptides make a bHLH residue is a negative 

regulator recognized by two alpha-helix linked through a 

loop. The variability of the loop allows dimerization 

through folding and filling in the case of other helices. 

Those amphipathic alpha-helices have separated by a 

linker region of length (Figure 1A). The Ramachandran 

diagram (φ, ψ plot) described the polypeptides located in 

parallel and anti-parallel beta sheets (Figure 1B). 

 
Table 1: Target sequence (Query sequence). 
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Figure 1A: Tertiary structure of ID1. 

 

Figure 1B: ID1 polypeptides position in Ramachandran plot. 

Genome-Wide Analysis 

The genome-wide analysis of both organisms by the HMMER 

algorithm obtained 72, 62 of bHLH domain in Homo sapiens and 

Mus musculus, respectively (Table 2). Standalone BLAST2 

output represents 12, 13 homologs of inhibitor differentiation 

genes in Homo sapiens and Mus musculus, respectively (Table 

2). The gene ontology annotation confirmed sequence accuracy 

of ID1-ID4 in the ID Family of bHLH TF’s in Homo sapiens and 

Mus musculus (Table 3 & Table 4). 

Organisms HMMER BLAST2 BLAST2GO 

Homo sapiens 72 11 2 

Mus musculus 62 13 2 

Total 134 24 4 

Table 2: Summary of the bHLH domain and homologs. 

Gene Homo sapiens Mus musculus  

ID1 2 2 

ID2 3 3 

ID3 2 1 

ID4 1 1 

Total 8 7 

Table 3: Summary of the ID family of bHLH TF’s. 

 

Gene Id Gene Protein 

ENSP00000365280.3 ID1 DNA-binding inhibitor ID-1    

ENSP00000365273.3 ID1 DNA-binding inhibitor ID-1    

ENSP00000379585.1 ID2 DNA-binding inhibitor ID-2 

ENSP00000385465.2 ID2 DNA-binding inhibitor ID-2 

ENSP00000234091.4 ID2 DNA-binding inhibitor ID-2 

ENSP00000489102.1 ID3 DNA-binding inhibitor ID-3   

ENSP00000363689.5 ID3 DNA-binding inhibitor ID-3   

ENSP00000367972.3 ID4 DNA-binding inhibitor ID-4 

(A) Homo sapiens. 

Gene Id Gene Protein 

ENSMUSP00000092019.4 ID1 
DNA-binding protein 

inhibitor ID-1 

ENSMUSP00000105449.1 ID1 
DNA-binding protein 

inhibitor ID-1 

ENSMUSP00000020974.6 ID2 
DNA-binding protein 

inhibitor ID-2 

ENSMUSP00000152052.1 ID2 
DNA-binding protein 

inhibitor ID-2 

ENSMUSP00000152069.1 ID2 
DNA-binding protein 

inhibitor ID-2 

ENSMUSP00000008016.2 ID3 
DNA-binding protein 

inhibitor ID-3 

ENSMUSP00000021810.1 ID4 
DNA-binding protein 

inhibitor ID-4 

(A) Mus musculus. 

Table 4: Summary of the gene ontology annotation: A) 

Homo sapiens and B) Mus musculus. 

Domain, Motifs, and Phylogeny Analysis 

The highest hits of ID1 (target gene) listed from both 

organisms for sequence aligning, MSA re-sults 

demonstrated conserved bHLH domain. The high 

consensus (90%) confirmed that the ex-tended bHLH 

residue (Figure 2A and Figure 2B) and their specific motifs 

(Figure 3A - Figure 3C). Further observation of the 

negatively regulated domain concluded that the ID1-ID4 

conserved in evolution (Figure 2B). The experiment of the 

phylogenetic tree suggested the molecular evolutionary 

relationship of the ID Family of bHLH TF’s in-between 

Homo sapiens and Mus musculus (Figure 4). 

Chromosome Location, Gene Network, and Expression 

Analysis 

Chromosome location study confirmed that the ID1 located 

band 20q11.21. Started 31,605,283 bp and, end 31,606,515 

bp in humans (Figure 5). The gene network study 

determined that the ID1 interacts with other molecules such 

as TCF3, TCF4, TCF12, RAP1A, ASCL3, THBS1, ETS2, 

ASCL1 also BMP2. Those molecular interactions govern 
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the outcome of the ID1 gene in particular cells (Figure 6). 

The disease state study in humans suggested the ID1-ID4 

genes highly expressed in the neoplasm of the eye, brain, 

CNS, astrocytoma, glioblastoma, oligodendroglioma 

(Figure 7) (Table 5). 

Therefore, the bHLH TF’s data analysis concluded the total 

number of ID genes, peptide structure, conserved domain, 

motifs, phylogeny, chromosome location, gene network, 

and gene expression in isolated organisms. 

 

 

 
Figure 2: A) ID1 conserved in both organisms. B) ID1-ID4 conserved in two organisms. 

 
Figure 3: Sequence motifs of ID1. 
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Figure 4: The evolutionary link between the ID family of bHLH TF’s in two different organisms. 
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Figure 5: A & B) ID1 expression in Human Brain; C & D) ID2 expression in Human Brain; E & F) ID3 expression in Human Brain; G 

& H) ID4 expression in Human Brain. 

 
Figure 6: ID1 in humans located at chromosome 20. 

 

Figure 7: ID1 interact with various TF’s. 

Gene Tumor Type References 

ID1, ID3 Glioblastoma Lyden et al., 1999 

ID1, ID3 Medulloblastoma Lyden et al., 1999 

ID1, ID3 Neuroblastoma Lyden et al., 1999 

ID1, ID2, ID3 Astrocytic tumor Vandeputte, D.A. et al., 2002 

ID1, ID2, ID3 Pancreatic cancer Maruyama et al., 1999 

ID1, ID2, ID3 Head and Neck cancer Langlands, K. et al., 2000 

ID1, ID2, ID3 Colorectal adenocarcinoma Wilson, J.W. et al., 2001 

ID1, ID2, ID3, ID4 Seminoma Sablitzky et al., 1998 

ID1, ID2 Pancreatic cancer Maruyama, H. et al., 1999 
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ID1, ID2 Pancreatic cancer Lee, K.T. et al., 2004 

ID1, ID2 T-cell lymphoma Kim, D. et al., 1999 

ID1, ID2 T-cell lymphoma Morrow, M.A. et al., 1999 

ID1 Medullary thyroid cancer Kebebew et al., 2000 

ID1, ID2, ID3 Squamous cell cancer Langlands et al., 2000 

ID1 Breast cancer Lin et al., 2000 

ID1 Breast cancer Fong, S. et al., 2003 

ID1 Breast cancer Schoppmann, S.F. et al., 2003 

ID2 Breast cancer Itahana, Y. et al., 2003 

ID3 Breast cancer de Candia, P. et al., 2003 

ID4 Breast cancer Beger et al., 2001 

ID1 Endometrial cancer Takai et al., 2001 

ID1 Cervical cancer Schindl et al., 2001 

ID1 Melanoma Polsky et al., 2001 

ID2 Neuroblastoma Lasorella et al., 2002 

ID2 Ewing’s sarcoma Fukuma, M. et al., 2003 

ID2 Ewing’s sarcoma Nishimori, H. et al., 2002 

ID1 Ovarian tumors Schindl, M. et al., 2003 

ID3 Ovarian tumors Arnold, J.M. et al., 2001 

ID1 Prostate cancer Ouyang, X.S. et al., 2002 

ID1 Prostate cancer Coppe, J.P. et al., 2004 

ID1 Esophageal cancer Maruyama, H. et al., 1999 

ID1 Oral cancer Nishimine, M. et al., 2003 

ID1 Melanoma Polsky, D. et al., 2001 

ID1 Hepatocellular cancer Lee, T.K. et al., 2003 

ID4 Acute lymphoblastic leukemia Bellido, M. et al., 2003 

Table 5: ID family of bHLH TF’s in primary human tumors. 

DISCUSSION 

The genomics study suggested the dominant outcome of 

the ID family of bHLH TF’s revealed numerous hallmarks 

of development such as stem cell defence, cellular growth, 

differentiation, lineage determination, cell-cycle 

regulation, angiogenesis, vasculogenesis, migration, 

proliferation, tumorigenesis, immune response, and energy 

metabolism [1,42,50-57]. The ID1-ID4 of bHLH TF’s 

shares negative DNA binding residue and their motif-

initiated dimerization by the interactions of other bHLH 

TF’s like E2A, HEB, and E2-2 are primarily the groups of 

E protein. The ID proteins have a negative DNA binding 

domain (amino acids residues). But ID proteins serve 

natural occurring dominant negative inhibiter of E proteins 

by the reaction of non-functional heterodimers. The ID1-

ID4 TF’s has similar functions to suppress the DNA-

binding response of E proteins. The sequestering of E 

proteins suggested inhibiter differentiation proteins 

decrease reactions of heterodimers via tissue-specific 

bHLH polypeptides [58]. The stability of inhibiter 

differentiation (ID) proteins for the E proteins governs 

discharge  functions during  sequestering by the motion of  

 

their structure. Hence, we can consider that the E proteins 

activity in the cells determines by the total concentration of 

E proteins subtracted by inhibiter differentiation proteins. 

The functional study supported inhibiter differentiation 

proteins engaged as an effective approach to delineate the 

collective activity of E proteins [59-61]. Precisely, the 

combination of inhibiter differentiation proteins, artificial 

molecule (recombination), and ET2 is supported and 

exploited. ET2 contains N-terminal polypeptides of E47 

with two transcriptional residues and C-terminal 

polypeptides of SCL/TAL1 composed of the basic helix-

loop-helix domain. Since the residues of SCL & TAL1 do 

not have to dimerize via ID proteins but has good stability 

for E protein [62]. But ET2 interact with E proteins 

greedily and bind to DNA sequences (E box) since ET2 

contains transcriptional arouse domains of E47, which is 

heterodimers between ET2 and E proteins that raise 

transcription of target associated genes. Consequently, the 

ET2 compete with the ID family to coordinate the other 

proteins and neutralize the inhibitory impact of inhibiter 

differentiation proteins. Also, ID proteins resist the 

functions of E proteins through the interaction of various 
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proteins without the bHLH domain. Such as ID2 interacts 

with RB proteins that differentially repress G1/S and G2/M 

associated genes after P53 activations. That leads to an 

antagonistic relationship between ID2-RB [47,40]. 

Indifference, the ID1 bind to membrane-associated 

molecule regulates integrin signals (CAV1) [41,63]. ID3 

implicates coimmunoprecipitate with PAX5 to control its 

transcriptional mobility [35]. Even the ID1/ID3 regulates 

cellular processes and transcribed the G1 cycle by a 

reaction of serum stimulation. ID1 functions promote the 

outgrowth of NIH3T3 fibroblast during the variation of the 

G1 to S cycle. Besides, elevated levels of E47 arrest cell 

cycles through a transformation in the NIH3T3 cell line. 

These mechanisms are constant for E proteins implicated 

during transcriptional catalysts of the p16/p21 are enzymes 

of the cycling-dependent kinase. The link between 

inhibitor differentiation proteins and E proteins in cell 

cycle-regulated fashion suggested the E2A (E12 or E47) as 

homodimer initiate transcription of CDKIs. So, antagonize 

ID proteins to E protein-initiated transcriptional catalysts 

of p16/p21 recognized as cell-cycle controllers. Other 

mechanisms suggested the resistance of ETS1 by inhibitor 

differentiation proteins controls the reaction of p16, a 

leading switch of the cycling-D-dependent kinase [64-68]. 

Also, ID1/ID3 stimulates the response of genes complex in 

proliferation, invasion, and survival outside the E proteins 

[51]. In some circumstances, the ID1 attach to the p65 

subunit of NF-kB and enhance the NF-kB targets genes. 

The formation of NF-kB activity and the anti-apoptotic 

effecter’s genes is BCL-XL and ICAM-1 (CD54). 

Therefore, ID proteins can either function as pro-apoptotic 

or as anti-apoptotic molecules. ID1-transfected cells 

resistance by tumour necrosis factor (TNF) through the 

inactivation of BAX and CASPASE 3 [60,69-71]. The 

ID1/ID3 in angiogenesis suggested function in the blood 

vessels of integrins (α6, β4, and ανβ3 integrins), FGFR1, 

and MMP2 by the response TSP-1. The above initiations 

are important for regulating bone-marrow-derived 

endothelial-cell attack and relocation. The recovery of 

angiogenesis impaired ID-initiated HSP90 inhibitor, 17-

allylamino-17 demethoxygeldanamycin or Tanespimycin 

suppresses HER2-neu-dependent manner [7,73-75]. In 

fibroblasts, ID proteins promote the tendency of blood 

vessels through the response of TSP-1, a robust inhibitor 

during angiogenesis [73]. Additionally, ID proteins boost 

the mobility of VEGF. Also, ID proteins prefer endothelial 

cells proficient for mobilization and maturation of VEGF 

[10,76,77]. Furthermore, a shed light of BMP-dependent 

repression of ID1 through TGFβ-specific 

SMAD2/SMAD3 requires synthesis via ATF 

(ATF3)/CREB family. The variation of CREB/ATF site for 

TGFβ-mediated suppression of promoter elements is 

necessary for BMP signalling. Synthesis of ATF3 induces 

by the function of TGFβ assist naturally through SMAD3 

but no BMP-specific SMAD1, enabling cells to 

characterize between BMP and TGFβ [78]. TGFβ act as an 

inhibitor or activator of endothelial cells based on two 

TGF-β receptors: (A) ALK5 signalling through TGFβ-

initiated SMAD2 and (B) ALK1 activate SMAD5 through 

BMP response. The aggregation of TGFβ suggested ALK1 

signalling via SMAD5 that accumulate migration and 

proliferation of endothelial cells by the function of ID1. 

Also, ALK5 suggested a high quantity of TGFβ that inhibit 

endothelial cell proliferation and regeneration through 

induction of PAI [79]. Besides, TGFβ and ID2 induce 

diverse cell lineages in the immune system. The trafficking 

of dendritic cells occupied by the TGFβ directly initiates 

transcription of ID2. Precisely, early B-cell progenitors 

revealed TGFβ1 initiated by the process of ID2/ID3. Also, 

ID3 adoption is prominent at the pro-and pre-B-cell stages, 

whereas ID2 initiation is powerful during the development 

of B cells. Therefore, TGFβ-mediated activity of ID2 

function leads to IgE associated gene and CSR (class 

switch recombination) [80-82]. In estimation, the ID2 

function regulated by GFI-1 is zinc-fingering proteins that 

act as a repressor. GFI-1 plays a dominant role in 
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hematopoietic stem cells that maintenance even binds to 

the ID2 promoter and inhibits transcription. Also, ID2 

accord a preface in erythroid differentiation and promote 

the growth of erythroid linage cells [83-85]. In a variation, 

the lipopolysaccharides (LPS) stimulate ID1 function in 

HSC. The response of LPS potentially attributed to 

transient functions of IL-10 (inflammatory cytokines) and 

TNFα increase turnover of HSC. These mechanisms reveal 

the ID1 function that initiates the HSC by the response of 

LPS that promote TLR signalling [86]. Furthermore, the 

ID1 to an immunoglobulin enhancer component found at 

the 3′-end of gene negotiates transcriptional catalyst by 

responses of STAT5 and C/EBPβ. ID1 function in myeloid 

tissue revealed CCAAT enhancer-binding proteins that 

play vital roles by cytokines such as IL-3 and GM-CSF 

activated by STAT5. Additional inflammatory cytokine of 

IL-6 also stimulates ID1 functions. Also, the ID2 function 

conveys to be initiated by C/EBPβ. Invariance, ID3 inflicts 

RAS/MAPK initiation by responses of the EGR TF’s [87-

92,62]. ID3 function in humoral immunity correlated with 

a low degree of IgG1 and IgG2 challenged the T-cell-

dependent or T-cell-independent antigens that block 

thymocytes during the transition from single to double-

positive cells. This functional mechanism suggested TCR 

(T-cell receptor) signalling enables ID3 to captivate several 

immune checkpoints during T cell maturation [7,54,93,94]. 

In cancer biology, the ID family of bHLH TF’s well 

characterized in diverse cancers such as glioblastoma, 

medulloblastoma, neuroblastoma, seminoma, prostate 

cancer, epithelial ovarian cancer, cervical cancer, 

endometrial cancer, breast carcinoma, melanoma, 

pancreatic carcinoma, head & neck cancer, medullary 

thyroid carcinoma, gastric cancer, T-cell lymphoma, B-cell 

leukaemia, colon carcinoma, and Ewing sarcoma [50-57]. 

ID genes function proposed as a prognostic signature in 

various cancers. In some conditions, it is adequate to render 

cells immortal or induce oncogenic mutation. Genomic 

stability of the ID family of bHLH TF’s in molecular 

cancer therapy originates from the hypothesis that 

accumulates blocking of cellular differentiation and ability 

to drive proliferation. The ID family of bHLH TF’s has 

negative functions to govern cellular differentiation and 

cell cycle regulation. Overwhelming evidence supported 

the resolution of ID genes act to enhance proliferative 

factors in different neural cell types. Also, the ID genes are 

a supreme regulator of proliferation in the NS. The 

functions of ID genes in neural growth suggested the 

encoded ID proteins control impulsive segregation and 

ultimately cell cycle block. These mobilities recognize by 

ID proteins to irritate bHLH TF’s and tumour suppressor 

proteins (RB family). It is supported the ID1-ID4 proteins 

in post-natal tissues abnormally expressed in tumour 

endothelial cells attained from CNS and PNS [1]. During 

development, ID genes set the timing of differentiation in 

various neural cells includes neurons and 

oligodendrocytes. Deregulation and malformed 

expressions of ID genes are associated with neo-

angiogenesis, relentless proliferation, and lack of 

differentiation, a landmark of neural tumour progression 

[1]. ID2 play a key role in cell fate judgment and 

oncogenesis. The process of ID2 initiated the mutation of 

a neural crest [95]. ID2 function increases by the response 

of N-MYC, a key regulator of differentiation and growth 

in the neural crest [41,96]. ID2 activate by the function of 

N-MYC and EWS-ETS (chimeric proteins). The top 

degree of ID2 function control by the response of EWS-

ETS (fusion oncoproteins) and C-MYC. The targets of 

EWS-ETS are co-express with ID2/N-MYC that restrains 

the ID2 in the cellular process. Interestingly, ID2 functions 

expand by the mobility of insulin growth factor (IGF) in 

pediatric neuroectodermal tumours [97-99]. Indifference, 

the NSCs revealed the self-renewal ability to originate all 

the major cells type in the NS. ID proteins maintain NSCs 

by regulating lineage commitment and preventing NSCs 

from premature differentiation. Precisely, ID2/ID4 blocks 

oligodendrocytes by inhibiting OLIG1/OLIG2 are bHLH 



www.tridhascholars.org | April-2023 

 

22 

 

TF’s robust during oligodendrocyte growth [100]. 

Surprisingly, ID4 as a BRCA1-regulating gene expression 

decreases BRCA1 and enhances tumorigenicity via HSP90 

inhibitor in cancer. In addition, ID1-ID3 blocks early 

differentiation by a function of HES1 that inhibits the 

function of proneural genes. Also, ID proteins restrain 

neuronal differentiation by binding with NeuroD and E47 

elements to E-boxes. ID proteins emerge to sustain self-

renewal ability in NSC for differentiation and stimulate 

proliferation. Notably, the p53 activity as a repressor of 

ID1/ID2 and p53 of NSCs raised ID functions and 

proliferation. This phenomenon is vital for cancer therapy 

since p53 is necessary for restraining glioblastoma 

[51,75,101-105]. Furthermore, ID1-ID4 proteins are 

illiberal with a short-life (<30 minutes) even the substrates 

of ubiquitin 26S proteasome system is a proteolytic 

molecule of eukaryotic cells [106,107]. UB is an 8-kDa 

protein driven to ubiquitin-initiative enzyme E1 in ATP-

dependent fashion and then to the ubiquitin-implicate 

enzyme E2. Generally, the ubiquitin covalently linked to 

the target protein by E3 ubiquitin ligase deploys to derive 

a polyubiquitin chain. The polyubiquitinated protein is 

rewarded by 26S proteasome and dehydrated in ATP 

dependent manner [52]. The E3 ubiquitin ligases 

categorize into four superior classes: (1) RING-finger-

type, (2) U-box-type, (3) HECT-type, and (4) PHD-finger-

type. The RING-finger-type subdivides into (A) Cullin E3 

ligase and (bB) Aanaphasepromoting complex/cyclosome 

(APC/C). The E3 ubiquitin ligase of APC/C indeed for 

CDC20 or CDH1 co-activators that bind the substrate via 

specific destruction box domains [52]. The 

ubiquitin/proteasome machinery includes two variable 

steps: (A) ubiquitination and (B) degradation. 

Ubiquitination mediated protein is described by abundant 

ubiquitin molecules recognized by proteasome complex 

from other proteins. Degradation of multi-ubiquitinated 

proteins prevails on a massive 26S proteasome 

aggregation. Those mechanisms exposed the cyclin-B 

synthesis is a regulated factor for the cells to drive mitosis. 

Even cyclin-B degradation is the central component that 

governs exit from mitosis and drives into the G1 phase of 

the next cell cycle. The cell cycle-dominated control of 

cyclin B-initiated catalyzes by ubiquitin/proteasome-

dependent fashion. Similarly, cycling E synthesis controls 

the late G1 progression and breakdown of cycling by the 

ubiquitin/proteasome for cells to move in the S phase. 

Invariance, p21/p27 (CDK inhibitors) is a repressor of p53, 

E2F-1, and pRB degraded through ubiquitin/proteasome 

machinery. Furthermore, the precision mediated by 

ubiquitin ligase maintains the elevated ratio of specificity 

for the substrate [108-110]. The ubiquitin ligase is a 

dominance of ID proteins for proteasomal-mediated 

degradation via APC/C (cell-cycle regulator). The APC/C 

and co-activator of CDH1 (CD324) recognize by ID1/ID2 

and ID4 through the conserved D-box motif situated in C-

terminus to the helix-loop-helix domain. Indeed, variations 

of the D-box of ID2 suggested a remarkable equilibrium of 

substances. During the cellular process, APC6/CDC16, 

APC8/CDC23, and APC3/CDC27 are core components of 

APC/C are fundamental for the ubiquitination substrates. 

The ID1-ID4 proteins are essentially for targets of APC/C 

for control of axonal growth in post-mitotic neurons via the 

signal of NOTCH1, NOGO receptor, SEMA3F, UNC5A, 

and JAG2 [3,52,111]. The degradation-resistant variation 

of ID2 acquired through mutations of a recognition site of 

APC/C (D-box) is sufficient to enhance axonal maturation 

and control inhibitory effects on axonal elongation 

imposed by myelin components. Besides, myelin of CNS 

inhibits neurite growth and stimulate the collapse of 

outgrowth cones through NOGO receptor, NOGO66, 

MAG, and OMPG molecules initiate axon-repulsive 

signals by UNC5A and SEMA3F both participate in the 

regulation of myelination through the signal of NOTCH 

and JAGGED. Therefore, ID1-ID4 proteins in post-mitotic 

neurons establish a novel loop among cancer and axonal 

regeneration. Also, dominant-negative antagonists prefer 
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to induce cytoplasmic relocation of ID proteins are the 

interferon-inducible protein p204. Interestingly, p204 

promote the ubiquitin-initiated degradation of ID3 and 

probably remaining ID proteins activation required for 

ubiquitin ligase(s) [52,112]. Therefore, the 

ubiquitin/proteasome executes a core function in the 

degradation of these regulatory proteins. Future work will 

require to achieve the targets in clinical cohorts. So, the 

functional mechanisms epitomize the ID family of bHLH 

TF’s is a novel regulator in tumour biology. 
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