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ABSTRACT 

Bleomycin is classified as a glycopeptide antibiotic initially discovered in the late 1950s, and used for treating a limited set of 

cancers. The structure and modes of action of bleomycin have been studied and established. It is believed that the primary 

antitumor effect of bleomycin is due to its ability to damage DNA, however the drug has the potential to destroy other 

targets. While we have focused previously on factors such as uptake transporters that could limit the genotoxicity of 

bleomycin, this mini-review will provide an overview of the drug actions on various macromolecules. There is a possibility 

that bleomycin may have broader clinical applications by exploring its effects on other cellular targets such as RNA. 
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1. INTRODUCTION 

Bleomycin is a hydrophilic antibiotic isolated from the 

culture medium of Streptomyces verticillis [1,2]. It 

comprises many species differing at the terminal amine, 

with bleomycin-A2 representing the most abundant form 

[2-5]. By early sixties, it had been shown that bleomycin 

can suppress the growth of tumors in animal models, and 

likewise substantially decrease the size of human tumors 

[6-10]. Bleomycin was proposed to mediate cell killing by 

damaging the DNA [11,12]. Further independent studies 

demonstrated that bleomycin triggers the induction of 

lysogenic phage in bacteria, a consequence of DNA 

damage [13-18]. In addition, it induces mitotic 

recombination and alters the genome in many organisms 

including the budding yeast Saccharomyces cerevisiae, 

Aspergillus, and Drosophila [13-18]. In human 

lymphocytes, bleomycin was shown to induce 

micronuclei formation and chromosome aberrations [19]. 

From the above findings, it is clear that bleomycin has the 

potential to act as a chemotherapeutic agent by damaging 

the DNA [20-23]. Importantly, bleomycin can also cause 

severe damage to RNA, and in light of the COVID-19 

pandemic that began in December of 2019, there is 

renewed interest in this drug as an antiviral agent [24]. 

Bleomycin is routinely used in almost all clinics in the 

world as blenoxane, which consists of several isomers 

that include bleomycin-A2 and bleomycin-B2, and many 

additional minor species such as bleomycin-A5 [4]. 

Blenoxane is used only in combination therapy with other 

antineoplastic agents such as etoposide [4,25,26]. It is 

most effective against lymphomas, testicular carcinomas, 

and squamous cell carcinomas [27,28]. In comparison to 

other antineoplastic drugs, bleomycin does not appear to 

cause myelosuppression by decreasing the cells 
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responsible for immunity [28,29]. At least half of the drug 

is cleared from the blood by the renal system within 2 

hours to 4 hours, except for patients with impaired kidney 

function [29]. One key limitation of bleomycin is that at 

high doses (i.e., >400 units or ~235 mg), it can induce 

pulmonary fibrosis, a condition characterized as a diffuse 

disease of the lung parenchyma that can cause pulmonary 

insufficiency leading to fatal hypoxemia [30,31]. It is 

believed that the bleomycin-induced pulmonary fibrosis is 

triggered by lipid peroxidation [32,33]. Another common 

factor that limits the clinical application of bleomycin is 

tumor resistance [28]. Recent studies provide strong 

evidence that this resistance can be accounted for by a 

decrease in drug uptake [34-38]. We have previously 

documented the discovery of an uptake transporter, Agp2, 

which is responsible for allowing the entry of the drug 

into yeast cells. Cells lacking Agp2 were extremely 

resistant to the toxic effects of bleomycin [39,40]. It was 

this seminal study that refutes the notion that bleomycin 

gains entry into cells by diffusion and leading to the 

discovery of additional transporters from other organisms 

[41]. In this review, our focus is to the highlight the 

targets of bleomycin with the aim that there will be 

renewed interest to investigate this drug for its potential 

antiviral properties. 

2. THE FUNCTIONAL DOMAINS OF 

BLEOMYCIN 

The structure of bleomycin consists of four functional 

domains, including a metal binding domain, a DNA 

binding domain, a linker region that connects both 

domains, and the carbohydrate moiety (Figure 1) [42,43]. 

The metal domain, which also binds to molecular oxygen, 

is responsible for the anti-cancer properties of bleomycin. 

This domain has a relax specificity for the types of metal 

ions it can accommodate, as it can bind to both redox-

active metal ions such as iron and copper and the non-

redox ones such as zinc, cadmium and cobalt, and the 

latter forms a stable complex with bleomycin [44-49]. 

The redox-active metal ion serves two roles in bleomycin-

induced genotoxicity, i.e., facilitating contact between 

bleomycin and the DNA and activating oxygen to produce 

a reactive radical species [20,45,46,50-52]. Thus, to 

enhance the production of DNA lesions reduced iron is 

used in clinical preparations of active bleomycin [52,53]. 

The DNA binding domain of bleomycin carries a 

bithiazole group that intercalates with the DNA and 

performs sequence-selective DNA cleavage (Figure 1) 

[22,54,55]. Some species of bleomycin, such as 

bleomycin-A5, carry a polyamine moiety in the DNA 

binding domain resulting in a new class of anti-cancer 

agent referred to as polyamine analogue (Figure 1) [56]. 

The role of the other regions of bleomycin remains 

unclear, although loss of the carbohydrate moiety from 

bleomycin does not affect its ability to cleave DNA, but 

may interfere with its entry into cells [57]. 

3. TYPES OF DNA LESIONS INDUCED BY 

BLEOMYCIN 

We have documented that bleomycin can enter 

mammalian cells through an active transport pathway, and 

reaches the nucleus to produce specific types of DNA 

lesions [39,40,58,59]. Bleomycin can bind to reduce iron 

(Fe II) and in the presence of molecular oxygen it 

becomes activated [60]. The activated bleomycin (Blm-

Fe(II)-O2) complex is a powerful oxidant, abstracting a 

hydrogen atom from the 4'-carbon of deoxyribose 

producing an unstable sugar carbon-radical and a single 

electron reduced form of activated bleomycin (Blm-

Fe(III)-OH•), which can propagate its attack on DNA 

(Figure 2) [61-64]. The resulting unstable sugar can be 

rearranged to generate at least four types of oxidative 

DNA lesions (Figure 2). These lesions are very similar to 

those generated by ionizing radiation, and include: (i) 

Oxidized apurinic/apyrimidinic (AP) sites, lacking 

template information for DNA polymerase [58,65], (ii) 
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DNA single strand breaks where the 3'-ends are 

terminated with a portion of the deoxyribose ring to form 

3'-phosphoglycolate (3'-PG) which cannot support DNA 

synthesis (Figure 2) [65,66]. The remaining portion of the 

fragmented sugar can undergo secondary reactions to 

form additional base adducts [65-70], and (iii) Bi-stranded 

DNA lesions that are generated at certain sequences, such 

as CGCC, when the Fe.bleomycin complex induces an AP 

site on one strand, while creating a directly opposing 

strand break on the complementary strand [49,71-73]. The 

bi-stranded lesions can be converted to double strand 

breaks following spontaneous cleavage of the AP site by 

primary amines (e.g., histone amine) in vivo [71-73]. 

 
Figure 1: Structure of bleomycin, depicting the three active 

domains, and its cellular targets. 

 

Figure 2: Structure of bleomycin-induced DNA lesions. 

Production of the various types of bleomycin-induced lesions is 

dependent on oxygenation conditions. In the absence of oxygen, 

bleomycin produces primarily oxidized apurinic/apyrimidinic 

(AP) site, while in the presence of oxygen it generates mostly 

DNA strand breaks, such as 3'-phosphoglycolate. 

The redox status of the cells plays an important role in the 

types of lesions that are generated by bleomycin [74-77]. 

In the presence of oxygen, bleomycin produces primarily 

DNA strand breaks, but under low oxygen tension it 

forms mainly AP sites (Figure 2) [58,65,71,78]. In 

addition, at high concentrations, bleomycin releases all 

four bases from DNA in the order of preference thymine 

> cytosine > adenosine > guanine [58,62,79]. At lower 

concentrations, bleomycin exhibits significant base 

sequence specificity. Although bleomycin cuts mixed 

sequence DNAs with a disposition for 

GC=GT>GA>>GG, it efficiently cleaves regions of 

(AT)n•(TA)n and hardly at (ATT)n•(TTA)n, 

(ATT)n•(AAT)n, (AC)n•(GT)n and (A)n•(T)n raising the 

possibility that AT rich regions of the genome are more 

susceptible to lesions formed by bleomycin [80-82]. The 

structure of DNA also plays a role in the outcome of 

bleomycin-induced DNA lesions and a recent study 

confirmed that 5’-GT, 5’-GT*A, and 5’-T/CGT*A were 

predominant sequences cleaved by the drug [43,83]. DNA 

that is pre-exposed to other DNA damaging agents, such 

as cisplatin, alters the pattern of lesions produce by 

bleomycin [84-86]. Thus, the clinical application of 

bleomycin in combination with other DNA damaging 

agents is likely to produce irreparable DNA lesions. 

The DNA lesions induced by bleomycin are mutagenic 

[87-91]. Introduction of bleomycin-treated vectors into 

mammalian cells, followed by recovery, revealed that the 

vectors contain high levels of base substitutions and 

single-base deletions [87,88]. These modifications are the 

results of misincorporation of nucleotides by DNA 

polymerase at unrepaired oxidized AP sites, and incorrect 

repair of bi-stranded DNA lesions [87,88]. Therefore, 

normal cells of a cancer patient exposed to bleomycin 

must rely on enzymes to efficiently repair bleomycin-

induced DNA lesions to prevent the production of lethal 

mutations that can lead to toxic side effects and secondary 

tumors. We have previously discussed the enzymes that 

are involved in processing bleomycin-induced DNA 

lesions and the consequences of cells lacking these 

enzymatic functions [92,93]. 
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4. BLEOMYCIN ACTIONS ON RNA 

Bleomycin can also attack different species of RNAs 

including transfer RNAs, ribosomal RNA, RNA present 

in RNA•DNA heteroduplex, as well as viral RNA such as 

the HIV-1 reverse transcriptase mRNA [94-99]. The drug 

exploits the same oxidative mechanism as that used for 

cleaving DNA to incise RNA [100, 101]. Bleomycin-

induced cleavage of RNA occurs preferentially at 5'-GU-

3' sequences in a manner analogous to the site-specific 

cleavage that occurs in DNA at 5'-GT-3' [94,100]. It is 

noteworthy that not all RNA molecules such as E. coli 

tRNA-Tyr and yeast mitochondrial tRNA-Asp, can be 

cleaved by bleomycin, suggesting that RNA structure 

plays an important role in the recognition and cleavage 

processes [94,100]. Another key difference between the 

cleavage of RNA and DNA is that double stranded RNA 

is not incised by bleomycin [101]. Moreover, significantly 

less RNA is cleaved by bleomycin as compared to DNA 

[94]. In addition, the cleavage of RNA, and not DNA, is 

inhibited with 0.5 mM Mg
2+

 ions, which is required to 

maintain RNA structure and function [95]. It is suggested 

that the Mg
2+

 ions prevent bleomycin from accessing the 

cleavage site [95]. The selectivity of bleomycin to destroy 

certain RNAs, even in the excess of non-substrate RNAs, 

suggests that unique RNA species could be targeted for 

destruction by bleomycin. It is believed that the 

specificity of RNA cleavage by bleomycin can be 

harnessed to eliminate virulent RNA viruses despite the 

evidence that DNA might be the most suitable target 

[94,95,101]. 

Since many viruses such as the hepatitis C virus upon 

infection of cells trigger the production of reactive oxygen 

species that can damaged the DNA and inhibit the DNA 

damage response pathway, it seems likely that bleomycin 

could perform multiple roles by destroying the viral RNA 

and hypersensitized the infected cells by further damaging 

the DNA (Figure 1). It seems plausible that virus-infected 

cells treated with bleomycin are at a disadvantage and can 

be easily eliminated by DNA damage-induced apoptosis 

[102,103]. Moreover, bleomycin has been shown to 

inhibit the replication of hepatitis C virus and sensitizes 

other viruses such as HIV to antiviral agents, which raise 

the possibility that this drug may have significant antiviral 

properties [104,105]. 

5. CELL SURFACE TARGETS 

Bleomycin can also attack the integrity of the cell wall of 

microbes [106,107]. It destroys the cell wall via oxidative 

damage to the sugar, as the sugar constituents (glucans, 

mannoproteins and chitin) of the cell wall have a 

stereochemistry at the C-5 position that is similar to the 

C-4 position of the deoxyribose moiety of DNA. Damage 

of the cell wall by bleomycin can expose the protoplast, 

which is osmotically fragile leading to the disruption of 

plasma membrane and subsequent cell death [106-108]. 

Bleomycin causes damage to the plasma membrane by 

triggering lipid peroxidation, and this may constitute the 

initiation process of bleomycin-induce pulmonary fibrosis 

[32,109,110]. 

6. PERSPECTIVES 

During the last two decades, we have extensively 

exploited the budding yeast Saccharomyces cerevisiae to 

identify how this organism mount a response to 

bleomycin. We have shown in several studies that 

bleomycin can damage the DNA and required at least two 

major DNA repair pathways, the base-excision and the 

recombinational DNA repair pathways, to process the 

damaged DNA. While we had envision in the late 1990s 

that upregulation of DNA repair mechanisms would 

predominantly account for tumor resistance to bleomycin, 

it turns out that the uptake of the drug into bacteria, yeast 

and human cells is a key factor that determines resistance 

(Figure 3) [39,40]. We have first reported the 

identification of an uptake transporter called Agp2 in 

yeast, which modulates the sensitivity of cells to 

bleomycin (Figure 3). Cells lacking Agp2 or 
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overexpressed the transporter were either extremely 

resistant or hypersensitive to bleomycin, respectively 

[39,40]. We subsequently reported a similar observation 

by the hCT2 transporter in human cells (Figure 3) [59]. 

However, it remains to be defined whether tumors such as 

testicular and ovarian cancers that are resistant to 

bleomycin are due to defects in hCT2 function(s). 

 

Figure 3: A model illustrating the transport and 

detoxification pathway of bleomycin in yeast and human 

cells. In yeast, the drug enters the cell via the transporter 

Agp2, and its activity is regulated by the kinases Ptk2 and 

Sky1. Following uptake, bleomycin is channeled to the 

nucleus to destroy the DNA, and to the vacuole for 

detoxification. In humans, the hCT2 transporter can 

mediate uptake of bleomycin into cells. Defects in these 

transporters confer resistance to bleomycin. 

Besides the above notable discoveries, what remains 

uncertain is whether other properties of bleomycin 

namely the ability to oxidize the plasma membrane to 

form lipid peroxidation products or its ability to cleave 

RNA would have roles in clinical applications (Figure 1). 

The observations that bleomycin can inhibit replication of 

hepatitis C virus and sensitize HIV to antiviral agents 

strongly suggest that the next plausible future direction is 

to investigate bleomycin as an antiviral agent. In light of 

the latest world pandemic, and the hunt for new drugs as 

antiviral agents, it seems that bleomycin offers some 

properties that might satisfy this requirement. It would be 

worthwhile to test bleomycin in combination with other 

antiviral drugs such as Remdesivir in an attempt to curtail 

the virulence of COVID-19. 
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