A Wider Scope for the Antibiotic and Anticancer Drug Bleomycin

Mustapha Aouida¹ and Dindial Ramotar^{1*}

Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar

Correspondence should be addressed to Dindial Ramotar, maouida@hbku.edu.qa; DRamotar@hbku.edu.qa

Received Date: May 06, 2020; Accepted Date: May 20, 2020; Published Date: May 28, 2020

ABSTRACT

Bleomycin is classified as a glycopeptide antibiotic initially discovered in the late 1950s, and used for treating a limited set of cancers. The structure and modes of action of bleomycin have been studied and established. It is believed that the primary antitumor effect of bleomycin is due to its ability to damage DNA, however the drug has the potential to destroy other targets. While we have focused previously on factors such as uptake transporters that could limit the genotoxicity of bleomycin, this mini-review will provide an overview of the drug actions on various macromolecules. There is a possibility that bleomycin may have broader clinical applications by exploring its effects on other cellular targets such as RNA.

KEYWORDS

Cell wall, Plasma membrane; RNA; DNA damage; Transporters

1. INTRODUCTION

Bleomycin is a hydrophilic antibiotic isolated from the culture medium of Streptomyces verticillis [1,2]. It comprises many species differing at the terminal amine, with bleomycin-A2 representing the most abundant form [2-5]. By early sixties, it had been shown that bleomycin can suppress the growth of tumors in animal models, and likewise substantially decrease the size of human tumors [6-10]. Bleomycin was proposed to mediate cell killing by damaging the DNA [11,12]. Further independent studies demonstrated that bleomycin triggers the induction of lysogenic phage in bacteria, a consequence of DNA damage [13-18]. In addition, it induces mitotic recombination and alters the genome in many organisms including the budding yeast Saccharomyces cerevisiae, Aspergillus, and Drosophila [13-18]. In human lymphocytes, bleomycin was shown induce

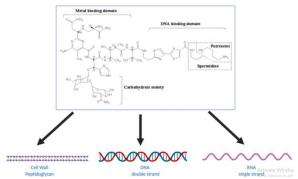
micronuclei formation and chromosome aberrations [19]. From the above findings, it is clear that bleomycin has the potential to act as a chemotherapeutic agent by damaging the DNA [20-23]. Importantly, bleomycin can also cause severe damage to RNA, and in light of the COVID-19 pandemic that began in December of 2019, there is renewed interest in this drug as an antiviral agent [24].

Bleomycin is routinely used in almost all clinics in the world as blenoxane, which consists of several isomers that include bleomycin-A2 and bleomycin-B2, and many additional minor species such as bleomycin-A5 [4]. Blenoxane is used only in combination therapy with other antineoplastic agents such as etoposide [4,25,26]. It is most effective against lymphomas, testicular carcinomas, and squamous cell carcinomas [27,28]. In comparison to other antineoplastic drugs, bleomycin does not appear to cause myelosuppression by decreasing the cells

Citation: Dindial Ramotar, A Wider Scope for the Antibiotic and Anticancer Drug Bleomycin. Cancer Med J 4(1): 27-37.

responsible for immunity [28,29]. At least half of the drug is cleared from the blood by the renal system within 2 hours to 4 hours, except for patients with impaired kidney function [29]. One key limitation of bleomycin is that at high doses (i.e., >400 units or ~235 mg), it can induce pulmonary fibrosis, a condition characterized as a diffuse disease of the lung parenchyma that can cause pulmonary insufficiency leading to fatal hypoxemia [30,31]. It is believed that the bleomycin-induced pulmonary fibrosis is triggered by lipid peroxidation [32,33]. Another common factor that limits the clinical application of bleomycin is tumor resistance [28]. Recent studies provide strong evidence that this resistance can be accounted for by a decrease in drug uptake [34-38]. We have previously documented the discovery of an uptake transporter, Agp2, which is responsible for allowing the entry of the drug into yeast cells. Cells lacking Agp2 were extremely resistant to the toxic effects of bleomycin [39,40]. It was this seminal study that refutes the notion that bleomycin gains entry into cells by diffusion and leading to the discovery of additional transporters from other organisms [41]. In this review, our focus is to the highlight the targets of bleomycin with the aim that there will be renewed interest to investigate this drug for its potential antiviral properties.

2. THE FUNCTIONAL DOMAINS OF BLEOMYCIN


The structure of bleomycin consists of four functional domains, including a metal binding domain, a DNA binding domain, a linker region that connects both domains, and the carbohydrate moiety (Figure 1) [42,43]. The metal domain, which also binds to molecular oxygen, is responsible for the anti-cancer properties of bleomycin. This domain has a relax specificity for the types of metal ions it can accommodate, as it can bind to both redoxactive metal ions such as iron and copper and the non-redox ones such as zinc, cadmium and cobalt, and the

latter forms a stable complex with bleomycin [44-49]. The redox-active metal ion serves two roles in bleomycin-induced genotoxicity, i.e., facilitating contact between bleomycin and the DNA and activating oxygen to produce a reactive radical species [20,45,46,50-52]. Thus, to enhance the production of DNA lesions reduced iron is used in clinical preparations of active bleomycin [52,53].

The DNA binding domain of bleomycin carries a bithiazole group that intercalates with the DNA and performs sequence-selective DNA cleavage (Figure 1) [22,54,55]. Some species of bleomycin, such as bleomycin-A5, carry a polyamine moiety in the DNA binding domain resulting in a new class of anti-cancer agent referred to as polyamine analogue (Figure 1) [56]. The role of the other regions of bleomycin remains unclear, although loss of the carbohydrate moiety from bleomycin does not affect its ability to cleave DNA, but may interfere with its entry into cells [57].

3. <u>TYPES OF DNA LESIONS INDUCED BY</u> <u>BLEOMYCIN</u>

We have documented that bleomycin can enter mammalian cells through an active transport pathway, and reaches the nucleus to produce specific types of DNA lesions [39,40,58,59]. Bleomycin can bind to reduce iron (Fe II) and in the presence of molecular oxygen it becomes activated [60]. The activated bleomycin (Blm-Fe(II)-O2) complex is a powerful oxidant, abstracting a hydrogen atom from the 4'-carbon of deoxyribose producing an unstable sugar carbon-radical and a single electron reduced form of activated bleomycin (Blm-Fe(III)-OH•), which can propagate its attack on DNA (Figure 2) [61-64]. The resulting unstable sugar can be rearranged to generate at least four types of oxidative DNA lesions (Figure 2). These lesions are very similar to those generated by ionizing radiation, and include: (i) Oxidized apurinic/apyrimidinic (AP) sites, lacking template information for DNA polymerase [58,65], (ii) DNA single strand breaks where the 3'-ends are terminated with a portion of the deoxyribose ring to form 3'-phosphoglycolate (3'-PG) which cannot support DNA synthesis (Figure 2) [65,66]. The remaining portion of the fragmented sugar can undergo secondary reactions to form additional base adducts [65-70], and (iii) Bi-stranded DNA lesions that are generated at certain sequences, such as CGCC, when the Fe.bleomycin complex induces an AP site on one strand, while creating a directly opposing strand break on the complementary strand [49,71-73]. The bi-stranded lesions can be converted to double strand breaks following spontaneous cleavage of the AP site by primary amines (e.g., histone amine) in vivo [71-73].

Figure 1: Structure of bleomycin, depicting the three active domains, and its cellular targets.

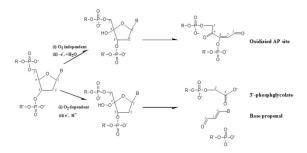


Figure 2: Structure of bleomycin-induced DNA lesions. Production of the various types of bleomycin-induced lesions is dependent on oxygenation conditions. In the absence of oxygen, bleomycin produces primarily oxidized apurinic/apyrimidinic (AP) site, while in the presence of oxygen it generates mostly DNA strand breaks, such as 3'-phosphoglycolate.

The redox status of the cells plays an important role in the types of lesions that are generated by bleomycin [74-77]. In the presence of oxygen, bleomycin produces primarily DNA strand breaks, but under low oxygen tension it forms mainly AP sites (Figure 2) [58,65,71,78]. In

addition, at high concentrations, bleomycin releases all four bases from DNA in the order of preference thymine > cytosine > adenosine > guanine [58,62,79]. At lower concentrations, bleomycin exhibits significant base sequence specificity. Although bleomycin cuts mixed sequence **DNAs** with disposition GC=GT>GA>>GG, it efficiently cleaves regions of $(AT)n\bullet(TA)n$ and hardly (ATT)n•(TTA)n, (ATT)n•(AAT)n, (AC)n•(GT)n and (A)n•(T)n raising the possibility that AT rich regions of the genome are more susceptible to lesions formed by bleomycin [80-82]. The structure of DNA also plays a role in the outcome of bleomycin-induced DNA lesions and a recent study confirmed that 5'-GT, 5'-GT*A, and 5'-T/CGT*A were predominant sequences cleaved by the drug [43,83]. DNA that is pre-exposed to other DNA damaging agents, such as cisplatin, alters the pattern of lesions produce by bleomycin [84-86]. Thus, the clinical application of bleomycin in combination with other DNA damaging agents is likely to produce irreparable DNA lesions.

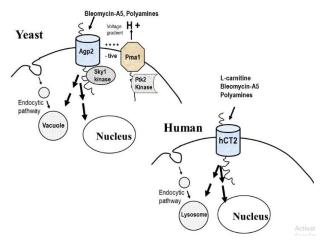
The DNA lesions induced by bleomycin are mutagenic [87-91]. Introduction of bleomycin-treated vectors into mammalian cells, followed by recovery, revealed that the vectors contain high levels of base substitutions and single-base deletions [87,88]. These modifications are the results of misincorporation of nucleotides by DNA polymerase at unrepaired oxidized AP sites, and incorrect repair of bi-stranded DNA lesions [87,88]. Therefore, normal cells of a cancer patient exposed to bleomycin must rely on enzymes to efficiently repair bleomycininduced DNA lesions to prevent the production of lethal mutations that can lead to toxic side effects and secondary tumors. We have previously discussed the enzymes that are involved in processing bleomycin-induced DNA lesions and the consequences of cells lacking these enzymatic functions [92,93].

4. BLEOMYCIN ACTIONS ON RNA

Bleomycin can also attack different species of RNAs including transfer RNAs, ribosomal RNA, RNA present in RNA•DNA heteroduplex, as well as viral RNA such as the HIV-1 reverse transcriptase mRNA [94-99]. The drug exploits the same oxidative mechanism as that used for cleaving DNA to incise RNA [100, 101]. Bleomycininduced cleavage of RNA occurs preferentially at 5'-GU-3' sequences in a manner analogous to the site-specific cleavage that occurs in DNA at 5'-GT-3' [94,100]. It is noteworthy that not all RNA molecules such as E. coli tRNA-Tyr and yeast mitochondrial tRNA-Asp, can be cleaved by bleomycin, suggesting that RNA structure plays an important role in the recognition and cleavage processes [94,100]. Another key difference between the cleavage of RNA and DNA is that double stranded RNA is not incised by bleomycin [101]. Moreover, significantly less RNA is cleaved by bleomycin as compared to DNA [94]. In addition, the cleavage of RNA, and not DNA, is inhibited with 0.5 mM Mg²⁺ ions, which is required to maintain RNA structure and function [95]. It is suggested that the Mg²⁺ ions prevent bleomycin from accessing the cleavage site [95]. The selectivity of bleomycin to destroy certain RNAs, even in the excess of non-substrate RNAs, suggests that unique RNA species could be targeted for destruction by bleomycin. It is believed that the specificity of RNA cleavage by bleomycin can be harnessed to eliminate virulent RNA viruses despite the evidence that DNA might be the most suitable target [94,95,101].

Since many viruses such as the hepatitis C virus upon infection of cells trigger the production of reactive oxygen species that can damaged the DNA and inhibit the DNA damage response pathway, it seems likely that bleomycin could perform multiple roles by destroying the viral RNA and hypersensitized the infected cells by further damaging the DNA (Figure 1). It seems plausible that virus-infected cells treated with bleomycin are at a disadvantage and can

be easily eliminated by DNA damage-induced apoptosis [102,103]. Moreover, bleomycin has been shown to inhibit the replication of hepatitis C virus and sensitizes other viruses such as HIV to antiviral agents, which raise the possibility that this drug may have significant antiviral properties [104,105].


5. CELL SURFACE TARGETS

Bleomycin can also attack the integrity of the cell wall of microbes [106,107]. It destroys the cell wall via oxidative damage to the sugar, as the sugar constituents (glucans, mannoproteins and chitin) of the cell wall have a stereochemistry at the C-5 position that is similar to the C-4 position of the deoxyribose moiety of DNA. Damage of the cell wall by bleomycin can expose the protoplast, which is osmotically fragile leading to the disruption of plasma membrane and subsequent cell death [106-108]. Bleomycin causes damage to the plasma membrane by triggering lipid peroxidation, and this may constitute the initiation process of bleomycin-induce pulmonary fibrosis [32,109,110].

6. PERSPECTIVES

During the last two decades, we have extensively exploited the budding yeast Saccharomyces cerevisiae to identify how this organism mount a response to bleomycin. We have shown in several studies that bleomycin can damage the DNA and required at least two major DNA repair pathways, the base-excision and the recombinational DNA repair pathways, to process the damaged DNA. While we had envision in the late 1990s that upregulation of DNA repair mechanisms would predominantly account for tumor resistance to bleomycin, it turns out that the uptake of the drug into bacteria, yeast and human cells is a key factor that determines resistance (Figure 3) [39,40]. We have first reported the identification of an uptake transporter called Agp2 in yeast, which modulates the sensitivity of cells to bleomycin (Figure 3). Cells lacking Agp2

overexpressed the transporter were either extremely resistant or hypersensitive to bleomycin, respectively [39,40]. We subsequently reported a similar observation by the hCT2 transporter in human cells (Figure 3) [59]. However, it remains to be defined whether tumors such as testicular and ovarian cancers that are resistant to bleomycin are due to defects in hCT2 function(s).

Figure 3: A model illustrating the transport and detoxification pathway of bleomycin in yeast and human cells. In yeast, the drug enters the cell via the transporter Agp2, and its activity is regulated by the kinases Ptk2 and Sky1. Following uptake, bleomycin is channeled to the nucleus to destroy the DNA, and to the vacuole for detoxification. In humans, the hCT2 transporter can mediate uptake of bleomycin into cells. Defects in these transporters confer resistance to bleomycin.

Besides the above notable discoveries, what remains uncertain is whether other properties of bleomycin namely the ability to oxidize the plasma membrane to form lipid peroxidation products or its ability to cleave RNA would have roles in clinical applications (Figure 1). The observations that bleomycin can inhibit replication of hepatitis C virus and sensitize HIV to antiviral agents strongly suggest that the next plausible future direction is to investigate bleomycin as an antiviral agent. In light of the latest world pandemic, and the hunt for new drugs as antiviral agents, it seems that bleomycin offers some properties that might satisfy this requirement. It would be worthwhile to test bleomycin in combination with other antiviral drugs such as Remdesivir in an attempt to curtail the virulence of COVID-19.

7. ACKNOWLEDGEMENT

This work was supported with funding from Hamad Bin Khalifa University, Doha, Qatar.

8. CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflicts of interest with the contents of this article.

REFERENCES

- 1. Umezawa H (1965) Bleomycin and other antitumor antibiotics of high molecular weight. Antimicrobial Agents and Chemotherapy 5: 1079-1085.
- 2. Umezawa H, Maeda K, Takeuchi T, et al. (1966) New antibiotics, bleomycin A and B. The Journal of Antibiotics 19(5): 200-209.
- 3. Umezawa H, Ishizuka M, Maeda K, et al. (1967) Studies on bleomycin. Cancer 20(5): 891-895.
- 4. Umezawa H (1971) Natural and artificial bleomycins: Chemistry and antitumour activities. Pure and Applied Chemistry 28(4): 665-680.
- 5. Fisher LM, Kuroda R, Sakai TT (1985) Interaction of bleomycin A2 with deoxyribonucleic acid: DNA unwinding and inhibition of bleomycin-induced DNA breakage by cationic thiazole amides related to bleomycin A2. Biochemistry 24(13): 3199-3207.
- 6. Suzuki H, Nagai K, Yamaki H, et al. (1968) Mechanism of action of bleomycin. Studies with the growing culture of bacterial and tumor cells. The Journal of Antibiotics 21(6): 379-386.

- 7. Kanno T, Nakazawa T, Sugimoto T (1969) Study of bleomycin on brain tumors. 1. Inhibitory effect of bleomycin on cultured brain tumor cells. Bulletin of the Seishin-Igaku Institute 16: 23-31.
- 8. Terasima T, Umezawa H (1970) Lethal effect of bleomycin on cultured mammalian cells. The Journal of Antibiotics 23(6): 300-304.
- Ichikawa T, Nakano I, Hirokawa I (1969) Bleomycin treatment of the tumors of penis and scrotum. The Journal of Urology 102(6): 699-707.
- 10. Oka S, Sato J, Nakai Y, et al. (1970) Treatment of lung cancer with bleomycin. The second report. Science Reports of the Research Institutes, Tokyo University, Series C 17 (3-4): 77-91.
- 11. Terasima T, Yasukawa M, Umezawa H (1970) Breaks and rejoining of DNA in cultured mammalian cells treated with bleomycin. GANN Japanese Journal of Cancer Research 61(5): 513-516.
- 12. Suzuki H, Nagai K, Akutsu E (1970) On the mechanism of action of bleomycin. Strand scission of DNA caused by bleomycin and its binding to DNA in vitro. The Journal of Antibiotics 23(10): 473-480.
- 13. Haidle CW, Weiss KK, Mace Jr ML (1972) Induction of bacteriophage by bleomycin. Biochemical and Biophysical Research Communications 48(5): 1179-1184.
- 14. Ferguson LR, Turner PM (1988) 'Petite' mutagenesis by anticancer drugs in *Saccharomyces cerevisiae*. European Journal of Cancer and Clinical Oncology 24(4): 591-596.
- 15. Koy JFM, Pleninger P, Wall L, et al. (1995) Genetic changes and bioassays in bleomycin-and phleomycin-treated cells, and their relationship to chromosomal breaks. Mutation Research/DNA Repair 336(1): 19-27.
- 16. Demopoulos NA, Stamatis ND, Yannopoulos G (1980) Induction of somatic and male crossing-over by bleomycin in Drosophila melanogaster. Mutation Research/Genetic Toxicology 78(4): 347-351.
- 17. Demopoulos NA, Kappas A, Pelecanos M (1982) Recombinogenic and mutagenic effects of the antitumour antibiotic bleomycin in *Aspergillus nidulans*. Mutation Research/Genetic Toxicology 102(1): 51-57.
- 18. Cederberg H, Ramel C (1989) Modifications of the effect of bleomycin in the somatic mutation and recombination test in Drosophila melanogaster. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 214(1): 69-80.
- 19. Hoffmann GR, Colyer SP, Littlefield LG (1993) Induction of micronuclei by bleomycin in G₀ human lymphocytes: I. Dose-response and distribution. Environmental and Molecular Mutagenesis 21(2): 130-135.
- 20. Burger RM, Peisach J, Horwitz SB (1981) Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. Journal of Biological Chemistry 256(22): 11636-11644.
- 21. Burger RM, Peisach J, Horwitz SB (1982) Stoichiometry of DNA strand scission and aldehyde formation by bleomycin. Journal of Biological Chemistry 257(15): 8612-8614.
- 22. Hecht SM (1986) DNA strand scission by activated bleomycin group antibiotics. Federation Proceedings 45(12): 2784-2791.
- 23. Kane SA, Hecht SM (1994) Polynucleotide recognition and degradation by bleomycin. In Progress in Nucleic Acid Research and Molecular Biology 49: 313-352.
- 24. Hecht SM (2000) Bleomycin: New perspectives on the mechanism of action. Journal of Natural Products 63(1): 158-168.
- 25. Wharam MD, Phillips TL, Kane L, et al. (1973) Response of a murine solid tumor to *in vivo* combined chemotherapy and irradiation. Radiology 109(2): 451-455.

- 26. Jani JP, Mistry JS, Morris G, et al. (1992) *In vivo* circumvention of human colon carcinoma resistance to bleomycin. Cancer Research 52(10): 2931-2937.
- 27. Povirk LF, Austin MF (1991) Genotoxicity of bleomycin. Mutation Research/Reviews in Genetic Toxicology 257(2): 127-143.
- 28. Lazo JS, Sebti SM, Schellens JH (1996) Bleomycin. Cancer chemotherapy and biological response modifiers 16: 39-47.
- 29. Dorr RT (1992) Bleomycin pharmacology: Mechanism of action and resistance, and clinical pharmacokinetics. In Seminars in oncology 19 (2_Suppl_5) 3-8.
- 30. Sikic BI (1986) Biochemical and cellular determinants of bleomycin cytotoxicity. Cancer Surveys 5(1): 81-91.
- 31. Harrison JH, Lazo JS (1987) High dose continuous infusion of bleomycin in mice: A new model for drug-induced pulmonary fibrosis. Journal of Pharmacology and Experimental Therapeutics 243(3): 1185-1194.
- 32. Ekimoto H, Takahashi K, Matsuda A, et al. (1985) Lipid peroxidation by bleomycin-iron complexes in vitro. The Journal of Antibiotics 38(8): 1077-1082.
- 33. Wang Q, Wang Y, Hyde DM, et al. (2000) Effect of antibody against integrin α4 on bleomycin-induced pulmonary fibrosis in mice. Biochemical Pharmacology 60(12): 1949-1958.
- 34. Miyaki M, Ono T, Hori S, et al. (1975) Binding of bleomycin to DNA in bleomycin-sensitive and-resistant rat ascites hepatoma cells. Cancer Research 35(8): 2015-2019.
- 35. Akiyama SI, Ikezaki K, Kuramochi H, et al. (1981) Bleomycin-resistant cells contain increased bleomycin-hydrolase activities. Biochemical and Biophysical Research Communications 101(1): 55-60.
- 36. Morris G, Mistry JS, Jani JP, et al. (1992) Neutralization of bleomycin hydrolase by an epitope-specific antibody. Molecular Pharmacology 42(1): 57-62.
- 37. Sebti SM, Jani JP, Mistry JS, et al. (1991) Metabolic inactivation: A mechanism of human tumor resistance to bleomycin. Cancer Research 51(1): 227-232.
- 38. Urade M, Ogura T, Mima T, et al. (1992) Establishment of human squamous carcinoma cell lines highly and minimally sensitive to bleomycin and analysis of factors involved in the sensitivity. Cancer 69(10): 2589-2597.
- 39. Aouida M, Pagé N, Leduc A, et al. (2004) A genome-wide screen in *Saccharomyces cerevisiae* reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin. Cancer Research 64(3): 1102-1109.
- 40. Aouida M, Leduc A, Wang H, et al. (2004) Characterization of a transport and detoxification pathway for the antitumour drug bleomycin in *Saccharomyces cerevisiae*. Biochemical Journal 384(1): 47-58.
- 41. Rempel S, Gati C, Nijland M, et al. (2020) A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 580(7803): 409-412.
- 42. Chen J, Stubbe J (2005) Bleomycins: Towards better therapeutics. Nature Reviews Cancer 5(2): 102-112.
- 43. Murray V, Chen JK, Chung LH (2018) The interaction of the metallo-glycopeptide anti-tumour drug bleomycin with DNA. International Journal of Molecular Sciences 19(5): 1372.
- 44. Oppenheimer NJ, Rodriguez LO, Hecht SM (1980) Metal binding to modified bleomycins. Zinc and ferrous complexes with an acetylated bleomycin. Biochemistry 19(17): 4096-4103.
- 45. Ehrenfeld GM, Rodriguez LO, Hecht SM, et al. (1985) Copper (I)-bleomycin: Structurally unique complex that mediates oxidative DNA strand scission. Biochemistry 24(1): 81-92.

- 46. Ehrenfeld GM, Shipley JB, Heimbrook DC, et al. (1987) Copper-dependent cleavage of DNA by bleomycin. Biochemistry 26(3): 931-942.
- 47. Levy MJ, Hecht SM (1988) Copper (II) facilitates bleomycin-mediated unwinding of plasmid DNA. Biochemistry 27(8): 2647-2650.
- 48. Petering DH, Mao Q, Li W, et al. (1996) Metallobleomycin-DNA interactions: Structures and reactions related to bleomycin-induced DNA damage. Metal Ions in Biological Systems 33: 619-648.
- 49. Hoehn ST, Junker HD, Bunt RC, et al. (2001) Solution structure of Co (III)-bleomycin-OOH bound to a phosphoglycolate lesion containing oligonucleotide: implications for bleomycin-induced double-strand DNA cleavage. Biochemistry 40(20): 5894-5905.
- 50. Oppenheimer NJ, Chang C, Rodriguez LO, et al. (1981) Copper (I). bleomycin. A structurally unique oxidation-reduction active complex. Journal of Biological Chemistry 256(4): 1514-1517.
- 51. Sausville EA, Peisach J, Horwitz SB (1976) A role for ferrous ion and oxygen in the degradation of DNA by bleomycin. Biochemical and Biophysical Research Communications 73(3): 814-822.
- 52. Sausville EA, Stein RW, Peisach J, et al. (1978) Properties and products of the degradation of DNA by bleomycin and iron (II). Biochemistry 17(14): 2746-2754.
- 53. Sausville EA, Peisach J, Horwitz SB (1978) Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 17(14): 2740-2746.
- 54. Kane SA, Natrajan A, Hecht SM (1994) On the role of the bithiazole moiety in sequence-selective DNA cleavage by Fe.bleomycin. Journal of Biological Chemistry 269(14): 10899-10904.
- 55. Abraham AT, Zhou X, Hecht SM (1999) DNA cleavage by Fe (II).bleomycin conjugated to a solid support. Journal of the American Chemical Society 121(9): 1982-1983.
- 56. Aouida M, Leduc A, Poulin R, et al. (2005) AGP2 encodes the major permease for high affinity polyamine import in *Saccharomyces cerevisiae*. Journal of Biological Chemistry 280(25): 24267-24276.
- 57. Leitheiser CJ, Rishel MJ, Wu X, et al. (2000) Solid-phase synthesis of bleomycin group antibiotics. Elaboration of deglycobleomycin A₅. Organic letters 2(21): 3397-3399.
- 58. Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chemical Reviews 98(3): 1153-1170.
- 59. Aouida M, Poulin R, Ramotar D (2010) The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. Journal of Biological Chemistry 285(9): 6275-6284.
- 60. Burger RM, Peisach J, Blumberg WE, et al. (1979) Iron-bleomycin interactions with oxygen and oxygen analogues. Effects on spectra and drug activity. Journal of Biological Chemistry 254(21): 10906-10912.
- 61. Povirk LF, Wübker W, Köhnlein W, et al. (1977) DNA double-strand breaks and alkali-labile bonds produced by bleomycin. Nucleic Acids Research 4(10): 3573-3580.
- 62. Ekimoto H, Kuramochi H, Takahashi K, et al. (1980) Kinetics of the reaction of bleomycin-Fe (II)-O2 complex with DNA. The Journal of Antibiotics 33(4): 426-434.
- 63. Burger RM, Berkowitz AR, Peisach J, et al. (1980) Origin of malondialdehyde from DNA degraded by Fe (II) x bleomycin. Journal of Biological Chemistry 255(24): 11832-11838.
- 64. Burger RM, Peisach J, Horwitz SB (1981) Mechanism of bleomycin action: *In vitro* studies. Life Sciences 28(7): 715-727.

- 65. Worth Jr L, Frank BL, Christner DF, et al. (1993) Isotope effects on the cleavage of DNA by bleomycin: Mechanism and modulation. Biochemistry 32(10): 2601-2609.
- 66. Giloni L, Takeshita M, Johnson F, et al. (1981) Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. Journal of Biological Chemistry 256(16): 8608-8615.
- 67. Dedon PC, Plastaras JP, Rouzer CA, et al. (1998) Indirect mutagenesis by oxidative DNA damage: Formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proceedings of the National Academy of Sciences 95(19): 11113-11116.
- 68. Chaudhary AK, Nokubo M, Reddy GR, et al. (1994) Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 265(5178): 1580-1582.
- 69. Fink SP, Reddy GR, Marnett LJ (1997) Mutagenicity in *Escherichia coli* of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proceedings of the National Academy of Sciences 94(16): 8652-8657.
- 70. Mao H, Schnetz-Boutaud NC, Weisenseel JP, et al. (1999) Duplex DNA catalyzes the chemical rearrangement of a malondialdehyde deoxyguanosine adduct. Proceedings of the National Academy of Sciences 96(12): 6615-6620.
- 71. Absalon MJ, Wu W, Kozarich JW, et al. (1995) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 2. Mechanism and dynamics. Biochemistry 34(6): 2076-2086.
- 72. Dedon PC, Goldberg IH (1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chemical Research in Toxicology 5(3): 311-332.
- 73. Steighner RJ, Povirk LF (1990) Bleomycin-induced DNA lesions at mutational hot spots: Implications for the mechanism of double-strand cleavage. Proceedings of the National Academy of Sciences 87(21): 8350-8354.
- 74. Onishi T, Iwata H, Takagi Y (1975) Effects of reducing and oxidizing agents on the action of bleomycin. The Journal of Biochemistry 77(4): 745-752.
- 75. Burger RM, Peisach J, Horwitz SB (1982) Effects of O₂ on the reactions of activated bleomycin. Journal of Biological Chemistry 257(7): 3372-3375.
- 76. Burger RM, Blanchard JS, Horwitz SB, et al. (1985) The redox state of activated bleomycin. Journal of Biological Chemistry 260(29): 15406-15409.
- 77. Templin J, Berry L, Lyman S, et al. (1992) Properties of redox-inactivated bleomycins: *In vitro* DNA damage and inhibition of Ehrlich cell proliferation. Biochemical Pharmacology 43(3): 615-623.
- 78. Absalon MJ, Kozarich JW, Stubbe J (1995) Sequence specific double-strand cleavage of DNA by Fe-bleomycin. 1. The detection of sequence-specific double-strand breaks using hairpin oligonucleotides. Biochemistry 34(6): 2065-2075.
- 79. Povirk LF (1979) Catalytic release of deoxyribonucleic acid bases by oxidation and reduction of an iron. cntdot. bleomycin complex. Biochemistry 18(18): 3989-3995.
- 80. Kuroda R, Shinomiya M, Otsuka M (1992) Origin of sequence specific cleavage of DNA by bleomycins. In Nucleic Acids Symposium Series 27: 9-10.
- 81. Nightingale KP, Fox KR (1993) DNA structure influences sequence specific cleavage by bleomycin. Nucleic Acids Research 21(11): 2549-2555.
- 82. Kuroda R, Satoh H, Shinomiya M, et al. (1995) Novel DNA photocleaving agents with high DNA sequence specificity related to the antibiotic bleomycin A 2. Nucleic Acids Research 23(9): 1524-1530.

- 83. Kane SA, Hecht SM, Sun JS, et al. (1995) Specific cleavage of a DNA triple helix by FeII. cntdot. bleomycin. Biochemistry 34(51): 16715-16724.
- 84. Mascharak PK, Sugiura Y, Kuwahara J, et al. (1983) Alteration and activation of sequence-specific cleavage of DNA by bleomycin in the presence of the antitumor drug cis-diamminedichloroplatinum (II). Proceedings of the National Academy of Sciences 80(22): 6795-6798.
- 85. Hertzberg RP, Caranfa MJ, Hecht SM (1985) DNA methylation diminishes bleomycin-mediated strand scission. Biochemistry 24(20): 5285-5289.
- 86. Hertzberg RP, Caranfa MJ, Hecht SM (1988) Degradation of structurally modified DNAs by bleomycin group antibiotics. Biochemistry 27(9): 3164-3174.
- 87. Bennett RA, Swerdlow PS, Povirk LF (1993) Spontaneous cleavage of bleomycin-induced abasic sites in chromatin and their mutagenicity in mammalian shuttle vectors. Biochemistry 32(12): 3188-3195.
- 88. Dar ME, Jorgensen TJ (1995) Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double-and single-strand breaks, respectively, in a human shuttle vector system. Nucleic Acids Research 23(16): 3224-3230.
- 89. Pavón V, Esteve I, Guerrero R, et al. (1995) Induced mutagenesis by bleomycin in the purple sulfur bacterium *Thiocapsa roseopersicina*. Current Microbiology 30(2): 117-120.
- 90. Steighner RJ, Povirk LF (1990) Effect of in vitro cleavage of apurinic/apyrimidinic sites on bleomycin-induced mutagenesis of repackaged lambda phage. Mutation Research/Genetic Toxicology 240(2): 93-100.
- 91. Tates AD, Van Dam FJ, Natarajan AT, et al. (1994) Frequencies of HPRT mutants and micronuclei in lymphocytes of cancer patients under chemotherapy: A prospective study. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 307(1): 293-306.
- 92. Ramotar D, Popoff SC, Demple B (1991) Complementation of DNA repair-deficient *Escherichia coli* by the yeast Apn1 apurinic/apyrimidinic endonuclease gene. Molecular Microbiology 5(1): 149-155.
- 93. Ramotar D, Masson JY (1996) A *Saccharomyces cerevisiae* mutant defines a new locus essential for resistance to the antitumour drug bleomycin. Canadian Journal of Microbiology 42(8): 835-843.
- 94. Carter BJ, De Vroom E, Long EC, et al. (1990) Site-specific cleavage of RNA by Fe (II). bleomycin. Proceedings of the National Academy of Sciences 87(23): 9373-9377.
- 95. Hüttenhofer A, Hudson S, Noller HF, et al. (1992) Cleavage of tRNA by Fe (II)-bleomycin. Journal of Biological Chemistry 267(34): 24471-24475.
- 96. Holmes CE, Hecht SM (1993) Fe.bleomycin cleaves a transfer RNA precursor and its" transfer DNA" analog at the same major site. Journal of Biological Chemistry 268(34): 25909-25913.
- 97. Hecht SM (1994) RNA degradation by bleomycin, a naturally occurring bioconjugate. Bioconjugate Chemistry 5(6): 513-526.
- 98. Keck MV, Hecht SM (1995) Sequence-specific hydrolysis of yeast tRNAPhe mediated by metal-free bleomycin. Biochemistry 34(37): 12029-12037.
- 99. Morgan MA, Hecht SM (1994) Iron (II) bleomycin-mediated degradation of a DNA-RNA heteroduplex. Biochemistry 33(34): 10286-10293.

- 100. Holmes CE, Carter BJ, Hecht SM (1993) Characterization of Iron (II).bleomycin-mediated RNA Strand Scission. Biochemistry 32(16): 4293-4307.
- 101. Holmes CE, Duff RJ, Van Der Marel GA, et al. (1997) On the chemistry of RNA degradation by Fe-bleomycin. Bioorganic & Medicinal Chemistry 5(6): 1235-1248.
- 102. Kucharski TJ, Gamache I, Gjoerup O, et al. (2011) DNA damage response signaling triggers nuclear localization of the chicken anemia virus protein apoptin. Journal of Virology 85(23): 12638-12649.
- 103. Machida K, McNamara G, Cheng KTH, et al. (2010) Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. The Journal of Immunology 185(11): 6985-6998.
- 104. Rakić B, Brûlotte M, Rouleau Y, et al. (2006) Bleomycin is a potent small-molecule inhibitor of hepatitis C virus replication. ChemBioChem 7(9): 1330-1333.
- 105. Georgiou NA, van der Bruggen T, Healy DM, et al. (2006) Bleomycin has antiviral properties against drug-resistant HIV strains and sensitises virus to currently used antiviral agents. International Journal of Antimicrobial Agents 27(1): 63-68.
- 106. Moore CW, Del Valle R, McKoy J, et al. (1992) Lesions and preferential initial localization of [S-methyl-3H] bleomycin A2 on *Saccharomyces cerevisiae* cell walls and membranes. Antimicrobial Agents and Chemotherapy 36(11): 2497-2505.
- 107. Beaudouin R, Lim ST, Steide JA, et al. (1993) Bleomycin affects cell wall anchorage of mannoproteins in *Saccharomyces cerevisiae*. Antimicrobial Agents and Chemotherapy 37(6): 1264-1269.
- 108. Lim ST, Jue CK, Moore CW, et al. (1995) Oxidative cell wall damage mediated by bleomycin-Fe (II) in Saccharomyces cerevisiae. Journal of Bacteriology 177(12): 3534-3539.
- 109. Hay J, Shahzeidi S, Laurent G (1991) Mechanisms of bleomycin-induced lung damage. Archives of Toxicology 65(2): 81-94.
- 110. Arndt R, Zeisig D, Bechtel I, et al. (2001) Liposomal bleomycin: Increased therapeutic activity and decreased pulmonary toxicity in mice. Drug Delivery 8(1): 1-7.